180
Views
1
CrossRef citations to date
0
Altmetric
Articles

Mechanical properties and microcosmic mechanism of multi-walled carbon nanotubes reinforced ultra-high strength concrete

, , , &
Pages 157-167 | Received 11 Sep 2022, Accepted 24 Sep 2022, Published online: 06 Oct 2022

References

  • Yuan, X.; Liao, G. Comprehensive Study on the Mechanical Property and Fracture Behavior of Ultra-High Strength Concrete. Fulleren. Nanotube. Carbon Nanostruct. 2022. DOI: 10.1080/1536383X.2022.2110082.
  • Nguyen, T.-T.; Thai, H.-T.; Ngo, T. Optimised Mix Design and Elastic Modulus Prediction of Ultra-High Strength Concrete. Constr. Build. Mater. 2021, 302, 124150. DOI: 10.1016/j.conbuildmat.2021.124150.
  • Zhang, B.; Feng, Y.; Xie, J.; He, J.; Zhang, Y.; Cai, C.; Huang, D.; Li, L. Effects of Fibres on Ultra-Lightweight High Strength Concrete: Dynamic Behaviour and Microstructures. Cem. Concr. Compos. 2022, 128, 104417. DOI: 10.1016/j.cemconcomp.2022.104417.
  • Phan, D. H. H.; Patel, V. I.; Liang, Q. Q.; Al Abadi, H.; Thai, H.-T. Numerical Investigations of Circular Double-Skin Steel Tubular Slender Beam-Columns Filled with Ultra-High-Strength Concrete. Eng. Struct. 2022, 254, 113814. DOI: 10.1016/j.engstruct.2021.113814.
  • Lin, S.; Li, Z.; Lu, Z-h.; Zhao, Y.-G. Experimental Study on the Behavior of Circular Ultra-High Strength Concrete-Filled Steel Tube Columns Subjected to Unequal End Moments. Eng. Struct. 2022, 267, 114709. DOI: 10.1016/j.engstruct.2022.114709.
  • Wan-Wendner, L.; Luzio, G. D. Discrete Modeling of Deterministic Size Effect of Normal-Strength and Ultra-High Performance Concrete under Compression. Constr. Build. Mater. 2022, 342, 127791. DOI: 10.2139/ssrn.4015346.
  • Cai, R.; Tian, Z.; Ye, H. Durability Characteristics and Quantification of Ultra-High Strength Alkali-Activated Concrete. Cem. Concr. Compos. 2022, 134, 104743. DOI: 10.1016/j.cemconcomp.2022.104743.
  • Liu, G.; Kan, D.; Cao, S. S.; Chen, Z.; Lyu, Q. Effect of Multi-Walled Carbon Nanotube on Reactive Powder Concrete (RPC) Performance in Sulfate Dry-Wet Cycling Environment. Constr. Build. Mater. 2022, 342, 128075. DOI: 10.1016/j.conbuildmat.2022.128075.
  • Thilakarathna, P. S. M.; Kristombu Baduge, K. S.; Mendis, P.; Lee, H.; Chandrathilaka, E. R. K.; Vimonsatit, V. Multiscale Modelling Framework for Elasticity of Ultra High Strength Concrete Using Nano/Microscale Characterization and Finite Element Representative Volume Element Analysis. Constr. Build. Mater. 2022, 327, 126968. DOI: 10.1016/j.conbuildmat.2022.126968.
  • Wu, Z.; Shi, C.; Khayat, K. H.; Wan, S. Effects of Different Nanomaterials on Hardening and Performance of Ultra-High Strength Concrete (UHSC). Cem. Concr. Compos. 2016, 70, 24–34. DOI: 10.1016/j.cemconcomp.2016.03.003.
  • Oh, T.; Chun, B.; Lee, S. K.; Lee, W.; Banthia, N.; Yoo, D.-Y. Substitutive Effect of nano-SiO2 for Silica Fume in Ultra-High-Performance Concrete on Fiber Pull-out Behavior. J. Mater. Res. Technol. 2022, 20, 1993–2007. DOI: 10.1016/j.jmrt.2022.08.013.
  • Yoo, D.-Y.; Oh, T.; Banthia, N. Nanomaterials in Ultra-High-Performance Concrete (UHPC) – a Review. Cem. Concr. Compos. 2022, 134, 104730. 10.1016/j.cemconcomp.2022.104730.
  • Amran, M.; Huang, S.-S.; Onaizi, A. M.; Makul, N.; Abdelgader, H. S.; Ozbakkaloglu, T. Recent Trends in Ultra-High Performance Concrete (UHPC): Current Status, Challenges, and Future Prospects. Constr. Build. Mater. 2022, 352, 129029. DOI: 10.1016/j.conbuildmat.2022.129029.
  • Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. DOI: 10.1038/354056a0.
  • Davydov, V. Y.; Kalashnikova, E. V.; Karnatsevich, V. L.; Kirillov, A. I. Adsorption Properties of Multi‐Wall Carbon Nanotubes. Fulleren. Nanotube. Carbon Nanostruct. 2005, 12, 513–518. DOI: 10.1081/FST-120027215.
  • Moradi, O.; Yari, M.; Zare, K.; Mirza, B.; Najafi, F. Carbon Nanotubes: A Review of Chemistry Principles and Reactions. Fulleren. Nanotube. Carbon Nanostruct. 2012, 20, 138–151. DOI: 10.1080/1536383X.2010.533312.
  • Zhang, L.; Zhu, L.; Chen, Y. Fabrication of Carbon Nanotubes/Polystyrene Nanocomposites via Pickering Emulsion Polymerization. Fulleren. Nanotube. Carbon Nanostruct. 2021, 29, 840–843. DOI: 10.1080/1536383X.2021.1909000.
  • Wu, W.; Liu, L.; Li, Y.; Guo, Z.-X.; Dai, L.; Zhu, D. Charge Transfer Complex of TTF‐Carbon Nanotubes. Fulleren. Nanotube. Carbon Nanostruct. 2003, 11, 89–93. DOI: 10.1081/FST-120021135.
  • Słoma, M.; Wierzbicki, M.; Skalski, A. Composite Powders with Carbon Nanotubes for Laser Printing of Electronics. Microelectron. Reliab. 2022, 136, 114718. DOI: 10.1016/j.microrel.2022.114718.
  • Soni, S. K.; Thomas, B.; Swain, A.; Roy, T. Functionally Graded Carbon Nanotubes Reinforced Composite Structures: An Extensive Review. Compos. Struct. 2022, 299, 116075. DOI: 10.1016/j.compstruct.2022.116075.
  • Tarakina, N. V.; Verberck, B. Tubular Fullerenes in Carbon Nanotubes. Fulleren. Nanotube Carbon Nanostruct. 2012, 20, 538–542. DOI: 10.1080/1536383X.2012.656058.
  • Chen, Z.; Zhao, J.; Cao, J.; Zhao, Y.; Huang, J.; Zheng, Z.; Li, W.; Jiang, S.; Qiao, J.; Xing, B.; Zhang, J. Opportunities for Graphene, Single-Walled and Multi-Walled Carbon Nanotube Applications in Agriculture: A Review. Crop Design 2022, 1, 100006. DOI: 10.1016/j.cropd.2022.100006.
  • Duclaux, L. Review of the Doping of Carbon Nanotubes (Multiwalled and Single-Walled). Carbon 2002, 40, 1751–1764. DOI: 10.1016/S0008-6223(02)00043-X.
  • Bibi, S.; Sarfaraz, S.; Yar, M.; Zaman, M. I.; Niaz, A.; Khan, A.; Hashmi, M. A.; Ayub, K. Structure and Electronic Characterization of Pristine and Functionalized Single Wall Carbon Nanotube Interacting with Sulfide Ion: A Density Functional Theory Approach. J. Mol. Liq. 2022, 366, 120144. DOI: 10.1016/j.molliq.2022.120144.
  • Zhang, Y.; Sun, X. Influence of Multi-Walled Carbon Nanotubes on the Multi-Scale Performance of Internally Cured Concrete Containing Pre-Wetted Lightweight Aggregate. J. Build. Eng. 2022, 58, 104986. DOI: 10.1016/j.jobe.2022.104986.
  • Singh, I.; Rehni, A. K.; Kumar, P.; Kumar, M.; Aboul‐Enein, H. Y. Carbon Nanotubes: Synthesis, Properties and Pharmaceutical Applications. Fulleren. Nanotube. Carbon Nanostruct. 2009, 17, 361–377. DOI: 10.1080/15363830903008018.
  • Morsy, M.; Helal, M.; El-Okr, M.; Ibrahim, M. Preparation, Purification and Characterization of High Purity Multi-Wall Carbon Nanotube. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 132, 594–598. DOI: 10.1016/j.saa.2014.04.122.
  • Wang, J.; Dong, S.; Pang, S. D.; Zhou, C.; Han, B. Pore Structure Characteristics of Concrete Composites with Surface-Modified Carbon Nanotubes. Cem. Concr. Compos. 2022, 128, 104453. DOI: 10.1016/j.cemconcomp.2022.104453.
  • Su, C.; Wang, X.; Ding, L.; Wu, Z.; Ma, X. Durability of Seawater Sea Sand Concrete Beams Reinforced with Carbon Nanotube-Modified BFRP Bars in a Marine Environment. Compos. Struct. 2022, 292, 115642. DOI: 10.1016/j.compstruct.2022.115642.
  • Haider, M. Z.; Jin, X.; Sharma, R.; Pei, J.; Hu, J. W. Enhancing the Compressive Strength of Thermal Energy Storage Concrete Containing a Low-Temperature Phase Change Material Using Silica Fume and Multiwalled Carbon Nanotubes. Constr. Build. Mater. 2022, 314, 125659. DOI: 10.1016/j.conbuildmat.2021.125659.
  • Liu, X.; Jiang, B.; Liao, G.; Zuo, J.; Xu, J.; Shah, S. P. Research on the Smart Behavior of MCNT Grafted CF/Cement-Based Composites. Fulleren. Nanotube. Carbon Nanostruct. 2021, 29, 844–851. DOI: 10.1080/1536383X.2021.1910239.
  • Ke, G.; Xu, X.; Fang, Y.; Song, B.; Jin, D.; Zuo, J. Mechanical Properties and Constitutive Relation of Hydrotalcite-Carbon Nanotube Concrete. Fulleren. Nanotube. Carbon Nanostruct. 2021, 29, 1016–1025. DOI: 10.1080/1536383X.2021.1926451.
  • Cwirzen, A.; Habermehl-Cwirzen, K.; Nasibulin, A. G.; Kaupinen, E. I.; Mudimela, P. R.; Penttala, V. SEM/AFM Studies of Cementitious Binder Modified by MWCNT and Nano-Sized Fe Needles. Mater. Charact. 2009, 60, 735–740. DOI: 10.1016/j.matchar.2008.11.001.
  • Al-Rub, R. A.; Tyson, B. M.; Yazdanbakhsh, A.; Grasley, Z. Mechanical Properties of Nanocomposite Cement Incorporating Surface-Treated and Untreated Carbon Nanotubes and Carbon Nanofibers. J. Nanomech. Micromech. 2012, 2, 1–6. DOI: 10.1061/(ASCE)NM.2153-5477.0000041.
  • Gdoutos, E. E.; Konsta-Gdoutos, M. S.; Danoglidis, P. A. Portland Cement Mortar Nanocomposites at Low Carbon Nanotube and Carbon Nanofiber Content: A Fracture Mechanics Experimental Study. Cem. Concr. Compos. 2016, 70, 110–118. DOI: 10.1016/j.cemconcomp.2016.03.010.
  • Jung, M.; Lee, Y. S.; Hong, S.-G.; Moon, J. Carbon Nanotubes (CNTs) in Ultra-High Performance Concrete (UHPC): Dispersion, Mechanical Properties, and Electromagnetic Interference (EMI) Shielding Effectiveness (SE). Cem. Concr. Res. 2020, 131, 106017. DOI: 10.1016/j.cemconres.2020.106017.
  • Rashad, A. M. Effect of Carbon Nanotubes (CNTs) on the Properties of Traditional Cementitious Materials. Constr. Build. Mater. 2017, 153, 81–101. DOI: 10.1016/j.conbuildmat.2017.07.089.
  • GB/T 50081-2019 ; Standard for Test Methods of Concrete Physical and Mechanical Properties; Chinese National Standards: Beijing, China, 2019.
  • Sarvandani, M. M.; Mahdikhani, M.; Aghabarati, H.; Fatmehsari, M. H. Effect of Functionalized Multi-Walled Carbon Nanotubes on Mechanical Properties and Durability of Cement Mortars. J. Build. Eng. 2021, 41, 102407. DOI: 10.1016/j.jobe.2021.102407.
  • Hunashyal, A. Experimental Investigation on the Effect of Multiwalled Carbon Nanotubes and Nano-SiO2 Addition on Mechanical Properties of Hardened Cement Paste. Adv. Mater. 2014, 3, 45–51. DOI: 10.11648/j.am.20140305.13.
  • Liang, G.; Liu, T.; Li, H.; Dong, B.; Shi, T. A Novel Synthesis of Lightweight and High-Strength Green Geopolymer Foamed Material by Rice Husk Ash and Ground-Granulated Blast-Furnace Slag. Resour. Conserv. Recycl. 2022, 176, 105922. DOI: 10.1016/j.resconrec.2021.105922.
  • Liang, G.; Liu, T.; Li, H.; Wu, K. Shrinkage Mitigation, Strength Enhancement and Microstructure Improvement of Alkali-Activated Slag/Fly Ash Binders by Ultrafine Waste Concrete Powder. Compos. B Eng. 2022, 231, 109570. DOI: 10.1016/j.compositesb.2021.109570.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.