86
Views
0
CrossRef citations to date
0
Altmetric
Articles

On quantum entangled nano-portation: C39 & C43 fullerenes

ORCID Icon & ORCID Icon
Pages 197-208 | Received 19 Sep 2022, Accepted 05 Oct 2022, Published online: 04 Nov 2022

References

  • Putz, M. V. Quantum Nanochemistry, 5 Volumes. Apple Academic Press: Palm Bay, Florida (USA) & Burlington (Ontario), Canada, 2016.
  • von Neumann, J. Mathematical Foundations of Quantum Mechanics. Princeton University Press: Princeton, NJ, 1955. (Reprinted in paperback form, 1932)
  • Steeb, W. H.; Hardy, Y. Problems and Solutions in Quantum Computing and Quantum Information, 1st Ed. World Scientific Publishing Company: Singapore, 2004.
  • Feynman, R. Nanotechnology: There’s Plenty of Room at the Bottom. Lecture at the Annual Meeting of the American Physical Society at Caltech, 1959. First published in the February 1960 Issue of Caltech’s Engineering and Science (http://www.feynman.com/science/nanotechnology/).
  • Hornyak, G. L.; Moore, J. J.; Tibbals, H. F.; Dutta, J. Fundamentals of Nanotechnology. CRC Press, Taylor & Francis Group: Boca Raton (USA), 2008.
  • Putz, M. V. Chemical Bonding as Quantum Tunneling: The Capra Bondons. Fuller. Nanotub. Carbon Nanostructures. 2022, 30, 979–986. DOI: 10.1080/1536383X.2022.2050705.
  • Putz, M. V.; Ori, O. Exotic Properties of Carbon Nanomatter. Springer: Netherlands: Dordrecht, 2015.
  • Brayfindley, E.; Irace, E. E.; Castro, C.; Karney, W. L. Stone–Wales Rearrangements in Polycyclic Aromatic Hydrocarbons: A Computational Study. J. Org. Chem. 2015, 80, 3825–3831. DOI: 10.1021/acs.joc.5b00066.
  • Clauser, J. F.; Horne, M. A.; Shimony, A.; Holt, R. A. Proposed Experiment to Test Local Hidden-Variable Theories. Phys. Rev. Lett. 1969, 23, 880–884. DOI: 10.1103/PhysRevLett.23.880.
  • Putz, M. V. The Bondons: The Quantum Particles of the Chemical Bond. Int. J. Mol. Sci. 2010, 11, 4227–4256.
  • Putz, M. V. Density Functional Theory of Bose-Einstein Condensation: Road to Chemical Bonding Quantum Condensate. Struct. Bond. 2012, 149, 1–50.
  • Ori, O.; Cataldo, F.; Putz, M. V. Topological Anisotropy of Stone-Wales Waves in Graphenic Fragments. Int. J. Mol. Sci. 2011, 12, 7934–7949.
  • Band, Y. B.; Avishai, Y. Quantum Mechanics with Applications to Nanotechnology and Information Science, 1st Ed. Academic Press – an Imprint of Elsevier: Oxford-Amsterdam, 2013.
  • Putz, M. V. Graphenic Nanospace: Bondonic Entanglement Perspectives. Fuller. Nanotub. Carbon Nanostructures. 2022, in press. DOI: 10.1080/1536383X.2022.2110081.
  • Putz, M. V.; Tudoran, M. A.; Mirica, M. C. Quantum Dots Searching for Bondots: Towards Sustainable Sensitized Solar Cells. In Sustainable Nanosystems Development, Properties, and Applications; Mihai V. Putz & Marius C. Mirica, Eds.; IGI Global: Hershey (PA), USA, 2016; Chapter 9.
  • Kumar, J.; Shrivastava, M. Stone–Wales Defect and Vacancy-Assisted Enhanced Atomic Orbital Interactions between Graphene and Ambient Gases: A First-Principles Insight. ACS Omega. 2020, 5, 31281–31288. DOI: 10.1021/acsomega.0c04729.
  • Deutsch, D. The Beginning of Infinity. Explanations That Transform the World. Penguin Books: London, 2012.
  • Putz, M. V.; Ori, O. Bondonic Effects in group-IV Honeycomb Nanoribbons with Stone-Wales Topological Defects. Molecules 2014, 19, 4157–4188. DOI: 10.3390/molecules19044157.
  • Fowler, P. W.; Fujita, M.; Yoshida, M. Leapfrog, Fries, Clar and Phason-Line-Free Fullerenes. Faraday Trans. 1996, 92, 3673–3675. DOI: 10.1039/ft9969203673.
  • Yoshida, M.; Fowler, P. W. Dihedral Fullerenes of Threefold Symmetry with and without Face Spirals. Faraday Trans. 1997, 93, 3289–3294. DOI: 10.1039/a702351k.
  • Yoshida, M.; Fowler, P. W. Systematic Relationships between Fullerenes without Spirals. Chem. Phys. Lett. 1997, 278, 256–261. DOI: 10.1016/S0009-2614(97)00980-9.
  • Brinkmann, G.; Fowler, P. W.; Yoshida, M. New Non-Spiral Fullerenes from Old: Generalised Truncations of Isolated-Pentagon-Triple Carbon Cages. Match-Commun. Math. Comput. Chem. 1998, 38, 7–17.
  • Talbot, C. Fullerene and Nanotube Chemistry: An Update. Sch. Sci. Rev. 1999, 81, 37–48.
  • Poater, J.; Solà, M. Open-Shell Spherical Aromaticity: The 2N2 + 2N + 1 (with S = N + ½) Rule. Chem. Commun. 2011, 47, 11647–11649. DOI: 10.1039/c1cc14958j.
  • Endo, M.; Kroto, H. W. Formation of Carbon Nanofibers. J. Phys. Chem. 1992, 96, 6941–6944. DOI: 10.1021/j100196a017.
  • Jäntschi, L. The Eigenproblem Translated for Alignment of Molecules. Symmetry 2019, 11, 1027. DOI: 10.3390/sym11081027.
  • Diudea, M. V.; Gutman, I.; Lorentz, J. Molecular Topology. Nova: Huntington, 2001.
  • Koorepazan-Moftakhar, F.; Ashrafi, A. R.; Ori, O.; Putz, M. V. Topological Invariants of Nanocones and Fullerenes. Curr. Org. Chem. 2015, 19, 1–9.
  • Ori, O.; D'Mello, M. A Topological Study of the Structure of the C76 Fullerene. Chem. Phys. Lett. 1992, 197, 49–54. DOI: 10.1016/0009-2614(92)86020-I.
  • Ori, O.; Cataldo, F.; Graovac, A. Topological Ranking of C28 Fullerenes Reactivity. Fuller. Nanotub. Carbon Nanostructures. 2009, 17, 308–323. DOI: 10.1080/15363830902782332.
  • Dobrynin, A. A.; Ori, O.; Putz, M. V.; Vesnin, A. Y. Generalized Topological Efficiency–Case Study with C84 Fullerene. Fuller. Nanotub. Carbon Nanostructures. 2020, 28, 545–550. DOI: 10.1080/1536383X.2020.1719482.
  • Vukicevic, D.; Cataldo, F.; Ori, O.; Graovac, A. Topological Efficiency of C66 Fullerene. Chem. Phys. Lett. 2011, 501, 442–445. DOI: 10.1016/j.cplett.2010.11.055.
  • Schwerdtfeger, P.; Wirz, N. L.; Avery, J. The Topology of Fullerenes. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2015, 5, 96–145.
  • Putz, M. V.; Tudoran, M. A.; Ori, O. Topological Organic Chemistry: From Distance Matrix to Timisoara Eccentricity. COC. 2015, 19, 249–273. DOI: 10.2174/1385272819666141216230705.
  • Huo, M.; Qin, J.; Cheng, J.; Yan, Z.; Qin, Z.; Su, X.; Jia, X.; Xie, C.; Peng, K. Deterministic Quantum Teleportation through Fiber Channels. Sci. Adv. 2018, 4, eaas9401. DOI: 10.1126/sciadv.aas9401.
  • Zaman, F.; Jeong, Y.; Shin, H. Counterfactual Bell-State Analysis. Sci. Rep. 2018, 8, 14641. DOI: 10.1038/s41598-018-32928-8).
  • Rovelli, C. Helgoland: Making Sense of the Quantum Revolution. Riverhead Books; Penguin Random House: New York, 2021.
  • Everett, H. [The] ‘Relative State’ Formulation of Quantum Mechanics. Rev. Mod. Phys. 1957, 29, 454–462. DOI: 10.1103/RevModPhys.29.454.
  • Wheeler, J. A.; Dewitt, B. S.; Cooper, L. N.; Van Vechten, D.; Graham, N. Dewitt, B.S.; Graham, N. (Eds.). The Many-Worlds Interpretation of Quantum Mechanics. A Fundamental Exposition by Hugh Everett, III. Princeton University Press: Princeton, New Jersey, 1973. https://cqi.inf.usi.ch/qic/everett_phd.pdf.
  • Wheeler, J. A.; Zurek, W. H. (eds.). Quantum Theory and Measurement; Princeton University Press: Princeton, 1983.
  • Susskind, L.; Friedman, A. Quantum Mechanics. The Theoretical Minimum. Penguin Books: London, 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.