204
Views
1
CrossRef citations to date
0
Altmetric
Articles

Beta-cyclodextrin carbon microspheres by hydrothermal carbonization for malachite green adsorption

& ORCID Icon
Pages 182-189 | Received 31 Aug 2022, Accepted 05 Oct 2022, Published online: 20 Oct 2022

References

  • Ming-Twang, S.; Zhi-Yong, Q.; Lin-Zhi, L.; Pei-Yee, A. Y.; Zaini, M. A. A. Dyes in Water: Characteristics, Impacts to the Environment and Human Health, and the Removal Strategies. In Advances in Chemistry Research; Taylor, James C., Ed.; Nova Science Publishers Inc.: New York, 2015; Vol. 23, pp 143–156.
  • Srivastava, S.; Sinha, R.; Roy, D. Toxicological Effects of Malachite Green. Aquat. Toxicol. 2004, 66, 319–329. DOI: 10.1016/j.aquatox.2003.09.008.
  • Shu-Hui, T.; Zaini, M. A. A. Dyes Classification and Effective Removal Techniques. In Advances in Chemistry Research; Taylor, James C., Ed.; Nova Science Publishers Inc.: New York, 2016; Vol. 30; pp 19–34.
  • Sartape, A. S.; Mandhare, A. M.; Jadhav, V. V.; Raut, P. D.; Anuse, M. A.; Kolekar, S. S. Removal of Malachite Green Dye from Aqueous Solution with Adsorption Technique Using Limonia Acidissima (Wood Apple) Shell as Low Cost Adsorbent. Arab. J. Chem. 2017, 10, S3229–S3238. DOI: 10.1016/j.arabjc.2013.12.019.
  • Gautam, D.; Kumari, S.; Ram, B.; Chauhan, G. S.; Chauhan, K. A. New Hemicellulose-Based Adsorbent for Malachite Green. J. Environ. Chem. Eng. 2018, 6, 3889–3897. DOI: 10.1016/j.jece.2018.05.029.
  • Abdelrahman, E. A. Synthesis of Zeolite Nanostructures from Waste Aluminum Cans for Efficient Removal of Malachite Green Dye from Aqueous Media. J. Mol. Liq. 2018, 253, 72–82. DOI: 10.1016/j.molliq.2018.01.038.
  • Huang, Q.; Song, S.; Chen, Z.; Hu, B.; Chen, J.; Wang, X. Biochar-Based Materials and Their Applications in Removal of Organic Contaminants from Wastewater: State-of-the-Art Review. Biochar 2019, 1, 45–73. DOI: 10.1007/s42773-019-00006-5.
  • Tran, H. N.; You, S.-J.; Chao, H.-P. Fast and Efficient Adsorption of Methylene Green 5 on Activated Carbon Prepared from New Chemical Activation Method. J. Environ. Manage. 2017, 188, 322–336. DOI: 10.1016/j.jenvman.2016.12.003.
  • Vo, A. T.; Nguyen, V. P.; Ouakouak, A.; Nieva, A.; Doma, B. T.; Tran, H. N.; Chao, H.-P. Efficient Removal of Cr(VI) from Water by Biochar and Activated Carbon Prepared through Hydrothermal Carbonization and Pyrolysis: Adsorption-Coupled Reduction Mechanism. Water 2019, 11, 1164–1178. DOI: 10.3390/w11061164.
  • Wang, D.; Liu, L.; Jiang, X.; Yu, J.; Chen, X. Adsorption and Removal of Malachite Green from Aqueous Solution Using Magnetic β-Cyclodextrin-Graphene Oxide Nanocomposites as Adsorbents. Colloids Surf. A Physicochem. Eng. Aspects 2015, 466, 166–173. DOI: 10.1016/j.colsurfa.2014.11.021.
  • Gupta, K.; Khatri, O. P. Reduced Graphene Oxide as an Effective Adsorbent for Removal of Malachite Green Dye: Plausible Adsorption Pathways. J. Colloid Interface Sci. 2017, 501, 11–21. DOI: 10.1016/j.jcis.2017.04.035.
  • Huang, W.; Hu, Y.; Li, Y.; Zhou, Y.; Niu, D.; Lei, Z.; Zhang, Z. Citric Acid-Crosslinked β-Cyclodextrin for Simultaneous Removal of Bisphenol A, Methylene Blue and Copper: The Roles of Cavity and Surface Functional Groups. J. Taiwan Inst. Chem. Eng. 2018, 82, 189–197. DOI: 10.1016/j.jtice.2017.11.021.
  • Amran, F.; Zaini, M. A. A. Beta-Cyclodextrin Adsorbents to Remove Water Pollutants—A Commentary. Front. Chem. Sci. Eng. 2022, 16, 1407–1423. DOI: 10.1007/s11705-022-2146-2.
  • Zhao, D.; Zhao, L.; Zhu, C.-S.; Huang, W.-Q.; Hu, J.-L. Water-Insoluble β-Cyclodextrin Polymer Crosslinked by Citric Acid: Synthesis and Adsorption Properties toward Phenol and Methylene Blue. J. Incl. Phenom. Macrocycl. Chem. 2009, 63, 195–201. DOI: 10.1007/s10847-008-9507-4.
  • Rout, D. R.; Jena, H. M. Efficient Adsorption of Malachite Green Dye Using Novel Reduced Graphene Oxide/β-Cyclodextrin Epichlorohydrin Composite: Batch and Fixed-Bed Studies. Int. J. Environ. Anal. Chem. 2022, 1–19. In press. DOI: 10.1080/03067319.2021.2022132.
  • Zhao, D.; Zhao, L.; Zhu, C.; Tian, Z.; Shen, X. Synthesis and Properties of Water-Insoluble B-Cyclodextrin Polymer Crosslinked by Citric Acid with PEG-400 as Modifier. Carbohydr. Polym. 2009, 78, 125–130. DOI: 10.1016/j.carbpol.2009.04.022.
  • Li, X.; Zhou, M.; Jia, J.; Ma, J.; Jia, Q. Jia, Q. Design of a Hyper-Crosslinked β-Cyclodextrin Porous Polymer for Highly Efficient Removal toward Bisphenol a from Water. Sep. Purif. Technol. 2018, 195, 130–137. DOI: 10.1016/j.seppur.2017.12.007.
  • Zhou, Y.; Cheng, G.; Chen, K.; Lu, J.; Lei, J.; Pu, S. Adsorptive Removal of Bisphenol A, Chloroxylenol, and Carbamazepine from Water Using a Novel β-Cyclodextrin Polymer. Ecotoxicol. Environ. Saf. 2019, 170, 278–285. DOI: 10.1016/j.ecoenv.2018.11.117.
  • Zha, G.; Yu, L. Influence of Sucrose Solution’s pH on Hydrothermally Synthesized Carbon Microspheres. Fuller. Nanotub. Carbon Nanostruct. 2016, 24, 139–143. DOI: 10.1080/1536383X.2015.1124419.
  • Román, S.; Nabais, J. M. V.; Laginhas, C.; Ledesma, B.; González, J. F. Hydrothermal Carbonization as an Effective Way of Densifying the Energy Content of Biomass. Fuel Process. Technol. 2012, 103, 78–83. DOI: 10.1016/j.fuproc.2011.11.009.
  • Tran, H. N.; Tomul, F.; Ha, N. T. H.; Nguyen, D. T.; Lima, E. C.; Le, G. T.; Chang, C.-T.; Masindi, V.; Woo, S. H. Innovative Spherical Biochar for Pharmaceutical Removal from Water: Insight into Adsorption Mechanism. J. Hazard. Mater. 2020, 394, 122255. DOI: 10.1016/j.jhazmat.2020.122255.
  • Sulaiman, N. S.; Zaini, M. A. A.; Arsad, A. Evaluation of Dyes Removal by Beta-Cyclodextrin Adsorbent. Mater. Today: Proc. 2021, 39, 907–910. DOI: 10.1016/j.matpr.2020.03.696.
  • Ariff, M. M.; Ahmad-Zaini, M. A. Carbon-Based Beta-Cyclodextrin Adsorbent for Methylene Blue and Reactive Orange 16 Removal from Water. Acta Chem. Iasi 2020, 28, 19–30. DOI: 10.2478/achi-2020-0002.
  • Liu, W.; Yang, Y.; Luan, C.; Liu, X.; Xu, B. Thermal Stability and Surface Chemistry Evolution of Oxidized Carbon Microspheres. Fuller. Nanotub. Carbon Nanostruct. 2014, 22, 670–678. DOI: 10.1080/1536383X.2012.717559.
  • Zhang, D.; Huo, P.; Liu, W. Behavior of Phenol Adsorption on Thermal Modified Activated Carbon. Chin. J. Chem. Eng. 2016, 24, 446–452. DOI: 10.1016/j.cjche.2015.11.022.
  • Tomul, F.; Arslan, Y.; Kabak, B.; Trak, D.; Kendüzler, E.; Lima, E. C.; Tran, H. N. Peanut Shells-Derived Biochars Prepared from Different Carbonization Processes: Comparison of Characterization and Mechanism of Naproxen Adsorption in Water. Sci. Total Environ. 2020, 726, 137828. DOI: 10.1016/j.scitotenv.2020.137828.
  • Maneerung, T.; Liew, J.; Dai, Y.; Kawi, S.; Chong, C.; Wang, C. H. Activated Carbon Derived from Carbon Residue from Biomass Gasification and Its Application for Dye Adsorption: Kinetics, Isotherms and Thermodynamic Studies. Bioresour. Technol. 2016, 200, 350–359. DOI: 10.1016/j.biortech.2015.10.047.
  • Belhamdi, B.; Merzougui, Z.; Laksaci, H.; Trari, M. The Removal and Adsorption Mechanisms of Free Amino Acid L-Tryptophan from Aqueous Solution by Biomass-Based Activated Carbon by H3PO4 Activation: Regeneration Study. Phys. Chem. Earth 2019, 114, 102791. DOI: 10.1016/j.pce.2019.07.004.
  • Hameed, B. H.; El-Khaiary, M. I. Equilibrium, Kinetics and Mechanism of Malachite Green Adsorption on Activated Carbon Prepared from Bamboo by K2CO3 Activation and Subsequent Gasification with CO2. J. Hazard. Mater. 2008, 157, 344–351. DOI: 10.1016/j.jhazmat.2007.12.105.
  • Wang, J.; Guo, X. Adsorption Kinetic Models: Physical Meanings, Applications, and Solving Methods. J. Hazard. Mater. 2020, 390, 122156–122156. DOI: 10.1016/j.jhazmat.2020.122156.
  • Huang, H.; Fan, Y.; Wang, J.; Gao, H.; Tao, S. Adsorption Kinetics and Thermodynamics of Water-Insoluble Crosslinked β-Cyclodextrin Polymer for Phenol in Aqueous Solution. Macromol. Res. 2013, 21, 726–731. DOI: 10.1007/s13233-013-1086-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.