204
Views
0
CrossRef citations to date
0
Altmetric
Articles

Luminescent carbon dots obtained from different precursors and methods and their applications as sensors for metal ions

, &
Pages 231-240 | Received 31 Aug 2022, Accepted 18 Oct 2022, Published online: 26 Oct 2022

References

  • Lim, S. Y.; Shen, W.; Gao, Z. Carbon Quantum Dots and Their Applications. Chem. Soc. Rev. 2005, 44, 362–381. DOI: 10.1039/C4CS00269E.
  • Li, Z.; Wang, L.; Li, Y.; Feng, Y.; Feng, W. Frontiers in Carbon Dots: design, Properties and Applications. Mater. Chem. Front. 2019, 3, 2571–2601. DOI: 10.1039/C9QM00415G.
  • Mintz, K. J.; Zhou, Y.; Leblanc, R. M. Recent Development of Carbon Quantum Dots regarding Their Optical Properties, Photoluminescence Mechanism, and Core Structure. Nanoscale 2009, 11, 4634–4652. DOI: 10.1039/C8NR10059D.
  • Xiao, L.; Sun, H. Novel Properties and Applications of Carbon Nanodots. Nanoscale Horiz. 2018, 3, 565–597. DOI: 10.1039/c8nh00106e.
  • Naik, V. M.; Bhosale, S. V.; Kolekar, G. B. A Brief Review on the Synthesis, Characterization and Analytical Applications of Nitrogen Doped Carbon Dots. Anal. Methods 2022, 14, 877–891. DOI: 10.1039/d1ay02105b.
  • Wang, Y.; Hu, A. Carbon Quantum Dots: Synthesis, Properties and Applications. J. Mater. Chem. C 2014, 2, 6921–6939. DOI: 10.1039/C4TC00988F.
  • Li, X.; Wang, H.; Shimizu, Y.; Pyatenko, A.; Kawaguchi, K.; Koshizaki, N. Preparation of Carbon Quantum Dots with Tunable Photoluminescence by Rapid Laser Passivation in Ordinary Organic Solvents. Chem. Commun. (Camb) 2011, 47, 932–934. DOI: 10.1039/c0cc03552a.
  • Wang, X.; Qu, K.; Xu, B.; Ren, J.; Qu, X. Microwave Assisted One-Step Green Synthesis of Cell-Permeable Multicolor Photoluminescent Carbon Dots without Surface Passivation Reagents. J. Mater. Chem. 2011, 21, 2445–2450. DOI: 10.1039/c0jm02963g.
  • Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. DOI: 10.1021/ja040082h.
  • Zhou, J.; Booker, C.; Li, R.; Zhou, X.; Sham, T.-K.; Sun, X.; Ding, Z. An Electrochemical Avenue to Blue Luminescent Nanocrystals from Multiwalled Carbon Nanotubes (MWCNTs). J. Am. Chem. Soc. 2007, 129, 744–745. DOI: 10.1021/ja0669070.
  • Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruf, B. A.; Wang, X.; Wang, H.; et al. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757. DOI: 10.1021/ja062677d.
  • Dong, Y.; Wang, R.; Li, H.; Shao, J.; Chi, Y.; Lin, X.; Chen, G. Polyamine-Functionalized Carbon Quantum Dots for Chemical Sensing. Carbon 2012, 50, 2810–2815. DOI: 10.1016/j.carbon.2012.02.046.
  • de Medeiros, T. V.; Manioudakis, J.; Noun, F.; Macairan, J.-R.; Victoria, F.; Naccache, R. Microwave-Assisted Synthesis of Carbon Dots and Their Applications. J. Mater. Chem. C 2019, 7, 7175–7195. DOI: 10.1039/C9TC01640F.
  • Atchudan, R.; Chandra Kishore, S.; Gangadaran, P.; Jebakumar Immanuel Edison, T. N.; Perumal, S.; Rajendran, R. L.; Alagan, M.; Al-Rashed, S.; Ahn, B.-C.; Lee, Y. R. Tunable Fluorescent Carbon Dots from Biowaste as Fluorescence Ink and Imaging Human Normal and Cancer Cells. Environ. Res. 2022, 204, 112365. DOI: 10.1016/j.envres.2021.112365.
  • Zattar, A. P. S.; Fajardo, G. L.; de Mesquita, J. P.; Pereira, F. V. Luminescent Carbon Dots Obtained from Chitosan: A Comparison between Different Methods to Enhance the Quantum Yield. Fuller Nanotub Car N 2020, 29, 414–422. DOI: 10.1080/1536383X.2020.1854742.
  • Atchudan, R.; Edison, T.; Perumal, S.; Vinodh, R.; Lee, Y. R. Betel-Derived Nitrogen-Doped Multicolor Carbon Dots for Environmental and Biological Applications. J. Mol. Liq. 2019, 296, 111817. DOI: 10.1016/j.molliq.2019.111817.
  • Atchudan, R.; Edison, T.; Perumal, S.; Muthuchamy, N.; Lee, Y. R. Hydrophilic Nitrogen-Doped Carbon Dots from Biowaste Using Dwarf Banana Peel for Environmental and Biological Applications. Fuel 2020, 275, 117821. DOI: 10.1016/j.fuel.2020.117821.
  • Chu, K.-W.; Lee, S. L.; Chang, C.-J.; Liu, L. Recent Progress of Carbon Dot Precursors and Photocatalysis Applications. Polymers 2019, 11, 689. DOI: 10.3390/polym11040689.
  • Zhang, J.; Yu, S.-H. Carbon Dots: large-Scale Synthesis, Sensing and Bioimaging. Mater. Today 2016, 19, 382–393. DOI: 10.1016/j.mattod.2015.11.008.
  • Li, L.; Dong, T. Photoluminescence Tuning in Carbon Dots: surface Passivation or/and Functionalization, Heteroatom Doping. J. Mater. Chem. C 2018, 6, 7944–7970. DOI: 10.1039/C7TC05878K.
  • Perikala, M.; Bhardwaj, A. Engineering Photo-Luminescent Centers of Carbon Dots to Achieve Higher Quantum Yields. ACS Appl. Electron. Mater. 2020, 2, 2470–2478. DOI: 10.1021/acsaelm.0c00411.
  • Sharma, A.; Das, J. Small Molecules Derived Carbon Dots: Synthesis and Applications in Sensing, Catalysis, Imaging, and Biomedicine. J. Nanobiotechnol. 2019, 17, 1–24. DOI: 10.1186/s12951-019-0525-8.
  • Sun, X.; Lei, Y. Fluorescent Carbon Dots and Their Sensing Applications. Trends Anal. Chem 2017, 89, 163–180. DOI: 10.1016/j.trac.2017.02.001.
  • Yang, J.; Chen, L.; Jiang, Q.; Yue, X. Optimized Preparation of Nitrogen-Doped Carbon Dots by Response Surface Methodology and Application in Cd2+ Detection. Fuller. Nanotub. Carbon Nanostructures 2019, 27, 233–239. DOI: 10.1080/1536383X.2018.1551211.
  • Laptinskiy, K. A.; Burikov, S. A.; Chugreeva, G. N.; Dolenko, T. A. The Mechanisms of Fluorescence Quenching of Carbon Dots upon Interaction with Heavy Metal Cations. Fuller. Nanotub. Carbon Nanostructures 2022, 30, 46–52. DOI: 10.1080/1536383X.2021.1995365.
  • Chahal, S.; Macairan, J.-R.; Yousefi, N.; Tufenkji, N.; Naccache, R. Green Synthesis of Carbon Dots and Their Applications. RSC Adv. 2021, 11, 25354–25363. DOI: 10.1039/d1ra04718c.
  • Xu, D.; Fu, N.; Xie, Y.; Wang, Y.; Xie, R.; Yang, H.; Sun, W.; Liu, X.; Han, A. Easy Formation of Nitrogen-Doped Carbon Dots towards Hg2+ Fluorescent Measurement and Multicolor Intracellular Imaging. Mater. Chem. Phys. 2021, 266, 124547. DOI: 10.1016/j.matchemphys.2021.124547.
  • Molaei, M. J. A Review on Nanostructured Carbon Quantum Dots and Their Applications in Biotechnology, Sensors, and Chemiluminescence. Talanta 2019, 196, 456–478. DOI: 10.1016/j.talanta.2018.12.042.
  • Kang, S.; Han, H.; Lee, K.; Kim, K. M. Ultrasensitive Detection of Fe3+ Ions Using Functionalized Graphene Quantum Dots Fabricated by a One-Step Pulsed Laser Ablation Process. ACS Omega 2022, 7, 2074–2081. DOI: 10.1021/acsomega.1c05542.
  • Ramanan, V.; Subray, S. H.; Ramamurthy, P. A Green Synthesis of Highly Luminescent Carbon Dots from Itaconic Acid and Their Application as an Efficient Sensor for Fe3+ Ions in Aqueous Medium. New J. Chem. 2018, 42, 8933–8942. DOI: 10.1039/C8NJ00813B.
  • Nanbedeh, S.; Faghihi, K. Synthesis and Characterization of New Mesoporous Polyurethane-Nitrogen Doped Carbon Dot Nanocomposites: Ultrafast, Highly Selective and Sensitive Turn-off Fluorescent Sensors for Fe3+ Ions. J. Fluoresc. 2021, 31, 517–539. DOI: 10.1007/s10895-020-02680-2.
  • Sahu, S.; Behera, B.; Maiti, T. K.; Mohapatra, S. Simple One-Step Synthesis of Highly Luminescent Carbon Dots from Orange Juice: Application as Excellent Bio-Imaging Agents. Chem. Commun. (Camb) 2012, 48, 8835–8837. DOI: 10.1039/c2cc33796g.
  • Wei, Y.; Chen, L.; Zhao, S.; Liu, X.; Yang, Y.; Du, J.; Li, O.; Yu, S. Green-Emissive Carbon Quantum Dots with High Fluorescence Quantum Yield: Preparation and Cell Imaging. Front. Mater. Sci. 2021, 15, 253–265. DOI: 10.1007/s11706-021-0544-x.
  • Liu, R.; Li, H.; Kong, W.; Kong, W.; Liu, J.; Liu, Y.; Tong, C.; Zhang, X.; Kang, Z. Ultra-Sensitive and Selective Hg2+ Detection Based on Fluorescent Carbon Dots. Mater. Res. Bull. 2013, 48, 2529–2534. DOI: 10.1016/j.materresbull.2013.03.015.
  • Zeng, Q.; Feng, T.; Tao, S.; Zhu, S.; Yang, B. Precursor-Dependent Structural Diversity in Luminescent Carbonized Polymer Dots (CPDs): The Nomenclature. Light Sci. Appl. 2021, 10, 1–13. DOI: 10.1038/s41377-021-00579-6.
  • Pavia, D. L.; Lampmam, G. M.; Kriz, G. S. Introduction to Spectroscopy; Thomson Learning: London, 2001.
  • Chen, X.; Zhang, W.; Wang, Q.; Fan, Y. C8-Structured Carbon Quantum Dots: Synthesis, Blue and Green Double Luminescence, and Origins of Surface Defects. Carbon 2014, 79, 165–173. DOI: 10.1016/j.carbon.2014.07.056.
  • Liu, L.; Mi, Z.; Wang, J.; Liu, Z.; Feng, F. A Label-Free Fluorescent Sensor Based on Yellow-Green Emissive Carbon Quantum Dots for Ultrasensitive Detection of congo Red and Cellular Imaging. Microchem. J. 2021, 168, 106420. DOI: 10.1016/j.microc.2021.106420.
  • Cui, X.; Wang, Y.; Liu, J.; Yang, Q.; Zhang, B.; Gao, Y.; Wang, Y.; Lu, G. Dual Functional N- and S-co-Doped Carbon Dots as the Sensor for Temperature and Fe3+ Ions. Sens. Actuators B: Chem. 2017, 242, 1272–1280. DOI: 10.1016/j.snb.2016.09.032.
  • Qiao, G.; Chen, G.; Wen, Q.; Liu, W.; Gao, J.; Yu, Z.; Wang, Q. Rapid Conversion from Common Precursors to Carbon Dots in Large Scale: Spectral Controls, Optical Sensing, Cellular Imaging and LEDs Application. J. Colloid Interface Sci. 2020, 580, 88–98. DOI: 10.1016/j.jcis.2020.07.034.
  • Song, W.; Duan, W.; Liu, Y.; Ye, Z.; Chen, Y.; Chen, H.; Qi, S.; Wu, J.; Liu, D.; Xiao, L.; et al. Ratiometric Detection of Intracellular Lysine and pH with One-Pot Synthesized Dual Emissive Carbon Dots. Anal. Chem. 2017, 89, 13626–13633. DOI: 10.1021/acs.analchem.7b04211.
  • Zhao, Y.; Liu, X.; Yang, Y.; Kang, L.; Yang, Z.; Liu, W.; Chen, L. Carbon Dots: From Intense Absorption in Visible Range to Excitation-Independent and Excitation-Dependent Photoluminescence. Fuller. Nanotub. Carbon Nanostructures 2015, 23, 922–929. DOI: 10.1080/1536383X.2015.1018413.
  • Yue, J.; Li, L.; Cao, L.; Zan, M.; Yang, D.; Wan, Z.; Chan, Z.; Mei, Q.; Miao, P.; Dong, W.-F. Two-Step Hydrothermal Preparation of Carbon Dots for Calcium Ion Detection. ACS Appl. Mater. Interfaces. 2019, 11, 44566–44572. DOI: 10.1021/acsami.9b13737.
  • Chen, Z.; Xu, X.; Meng, D.; Jiang, H.; Zhou, Y.; Feng, S.; Mu, Z.; Yang, Y. Dual-Emitting N/S-Doped Carbon Dots-Based Ratiometric Fluorescent and Light Scattering Sensor for High Precision Detection of Fe(III) Ions. J. Fluoresc. 2020, 30, 1007–1013. DOI: 10.1007/s10895-020-02571-6.
  • Liang, Y.; Xu, L.; Tang, K.; Guan, Y.; Wang, T.; Wang, H.; Yu, W. W. Nitrogen-Doped Carbon Dots Used as an “on–off–on” Fluorescent Sensor for Fe3+ and Glutathione Detection. Dyes Pigm. 2020, 178, 108358. DOI: 10.1016/j.dyepig.2020.108358.
  • Kailasa, S. K.; Ha, S.; Baek, S. H.; Phan, L. M. T.; Kim, S.; Kwak, K.; Park, T. J. Tuning of Carbon Dots Emission Color for Sensing of Fe3+ Ion and Bioimaging Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 98, 834–842. DOI: 10.1016/j.msec.2019.01.002.
  • Song, Y.; Zhu, C.; Song, J.; Li, H.; Du, D.; Lin, Y. Drug-Derived Bright and Color-Tunable N-Doped Carbon Dots for Cell Imaging and Sensitive Detection of Fe3+ in Living Cells. ACS Appl. Mater. Interfaces 2017, 9, 7399–7405. DOI: 10.1021/acsami.6b13954.
  • Gao, G.; Jiang, Y.-W.; Jia, H.-R.; Yang, J.; Wu, F.-G. On-off-on Fluorescent Nanosensor for Fe3+ Detection and Cancer/Normal Cell Differentiation via Silicon-Doped Carbon Quantum Dots. Carbon 2018, 134, 232–243. DOI: 10.1016/j.carbon.2018.02.063.
  • Chen, X.; Bai, J.; Ma, Y.; Yuan, G.; Mei, J.; Zhang, L.; Ren, L. Multifunctional Sensing Applications of Biocompatible N-Doped Carbon Dots as pH and Fe3+ Sensors. Microchem. J. 2019, 149, 103981. DOI: 10.1016/j.microc.2019.103981.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.