202
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effect of nanostructure, porosity and extent of oxidation on soot reactivity

, , , &
Pages 241-254 | Received 28 Jun 2022, Accepted 18 Oct 2022, Published online: 27 Oct 2022

References

  • Yang, Y.; Ruan, Z.; Wang, X.; Yang, Y.; Mason, T. G.; Lin, H.; Tian, L. Short-Term and Long-Term Exposures to Fine Particulate Matter Constituents and Health: A Systematic Review and Meta-Analysis. Environ. Pollut. 2019, 247, 874–882. 10.1016/j.envpol.2018.12.060.
  • Meng, Z.; Chen, C.; Li, J.; Fang, J.; Tan, J.; Qin, Y.; Jiang, Y.; Qin, Z.; Bai, W.; Liang, K. Particle Emission Characteristics of DPF Regeneration from DPF Regeneration Bench and Diesel Engine Bench Measurements. Fuel 2020, 262, 116589. DOI: 10.1016/j.fuel.2019.116589.
  • Jiang, R.; Liu, Y.; Hu, D.; Zhu, L. Exhaust and Non-Exhaust Airborne Particles from Diesel and Electric Buses in Xi’an: A Comparative Analysis. Chemosphere 2022, 306, 135523. 10.1016/j.chemosphere.2022.135523.
  • Higgins, K. J.; Jung, H.; Kittelson, D. B.; Roberts, J. T.; Zachariah, M. R. Kinetics of Diesel Nanoparticle Oxidation. Environ. Sci. Technol. 2003, 37, 1949–1954. DOI: 10.1021/es0261269.
  • Yehliu, K.; Lilik, G. K.; Vander Wal, R. L.; Sun, C.; Boehman, A. L. Impacts of Advanced Diesel Combustion Operation on Soot Nanostructure and Reactivity. Int. J. Engine Res. 2017, 18, 532–542. DOI: 10.1177/1468087416659947.
  • Ess, M. N.; Bladt, H.; Mühlbauer, W.; Seher, S. I.; Zöllner, C.; Lorenz, S.; Brüggemann, D.; Nieken, U.; Ivleva, N. P.; Niessner, R. Reactivity and Structure of Soot Generated at Varying Biofuel Content and Engine Operating Parameters. Combust. Flame 2016, 163, 157–169. DOI: 10.1016/j.combustflame.2015.09.016.
  • Li, X.; Guan, C.; Luo, Y.; Huang, Z. Effect of Multiple-Injection Strategies on Diesel Engine Exhaust Particle Size and Nanostructure. J. Aerosol Sci. 2015, 89, 69–76. DOI: 10.1016/j.jaerosci.2015.07.008.
  • Xu, Z.; Li, X.; Guan, C.; Huang, Z. Effects of Injection Timing on Exhaust Particle Size and Nanostructure on a Diesel Engine at Different Loads. J. Aerosol Sci. 2014, 76, 28–38. DOI: 10.1016/j.jaerosci.2014.05.002.
  • Al-Qurashi, K.; Boehman, A. L. Impact of Exhaust Gas Recirculation (EGR) on the Oxidative Reactivity of Diesel Engine Soot. Combust. Flame 2008, 155, 675–695. DOI: 10.1016/j.combustflame.2008.06.002.
  • Al-Qurashi, K.; Lueking, A. D.; Boehman, A. L. The Deconvolution of the Thermal, Dilution, and Chemical Effects of Exhaust Gas Recirculation (EGR) on the Reactivity of Engine and Flame Soot. Combust. Flame 2011, 158, 1696–1704. DOI: 10.1016/j.combustflame.2011.02.006.
  • Li, X.; Xu, Z.; Guan, C.; Huang, Z. Impact of Exhaust Gas Recirculation (EGR) on Soot Reactivity from a Diesel Engine Operating at High Load. Appl. Therm. Eng. 2014, 68, 100–106. [Database] DOI: 10.1016/j.applthermaleng.2014.04.029..
  • Boehman, A. L.; Song, J.; Alam, M. Impact of Biodiesel Blending on Diesel Soot and the Regeneration of Particulate Filters. Energy Fuels 2005, 19, 1857–1864. DOI: 10.1021/ef0500585.
  • Rodríguez-Fernández, J.; Lapuerta, M.; Sánchez-Valdepeñas, J. Regeneration of Diesel Particulate Filters: Effect of Renewable Fuels. Renew. Energy 2017, 104, 30–39. DOI: 10.1016/j.renene.2016.11.059.
  • Song, J.; Alam, M.; Boehman, A. L.; Kim, U. Examination of the Oxidation Behavior of Biodiesel Soot. Combust. Flame 2006, 146, 589–604. DOI: 10.1016/j.combustflame.2006.06.010.
  • Song, J.; Alam, M.; Boehman, A. L. Impact of Alternative Fuels on Soot Properties and DPF Regeneration. Combust. Sci. Technol. 2007, 179, 1991–2037. [Database] DOI: 10.1080/00102200701386099..
  • Guo, H.; Anderson, P. M.; Sunderland, P. B. Optimized Rate Expressions for Soot Oxidation by OH and O2. Fuel 2016, 172, 248–252. DOI: 10.1016/j.fuel.2016.01.030.
  • Vander Wal, R. L.; Yezerets, A.; Currier, N. W.; Kim, D. H.; Wang, C. M. HRTEM Study of Diesel Soot Collected from Diesel Particulate Filters. Carbon 2007, 45, 70–77. DOI: 10.1016/j.carbon.2006.08.005.
  • Liati, A.; Dimopoulos Eggenschwiler, P.; Schreiber, D.; Zelenay, V.; Ammann, M. Variations in Diesel Soot Reactivity along the Exhaust after-Treatment System, Based on the Morphology and Nanostructure of Primary Soot Particles. Combust. Flame 2013, 160, 671–681. DOI: 10.1016/j.combustflame.2012.10.024.
  • Wang, X.; Wang, Y.; Bai, Y.; Wang, P.; Zhao, Y. An Overview of Physical and Chemical Features of Diesel Exhaust Particles. J. Energy Inst. 2019, 92, 1864–1888. DOI: 10.1016/j.joei.2018.11.006.
  • Singh, M.; Srilomsak, M.; Wang, Y.; Hanamura, K.; Vander Wal, R. Nanostructure Changes in Diesel Soot during NO2-O2 Oxidation under Diesel Particulate Filter-Like Conditions toward Filter Regeneration. Int. J. Engine Res. 2019, 20, 953–966. DOI: 10.1177/1468087418807608.
  • Strzelec, A.; Wal, R. L. V.; Thompson, T. N.; Toops, T. J.; Daw, C. S. NO2 Oxidation Reactivity and Burning Mode of Diesel Particulates. Top. Catal. 2016, 59, 686–694. DOI: 10.1007/s11244-016-0544-8.
  • Liang, X.; Wang, Y.; Wang, Y.; Zhao, B.; Zhang, Z.; Lv, X.; Wu, Z.; Cai, X.; Wang, K. Impact of Lubricating Base Oil on Diesel Soot Oxidation Reactivity. Combust. Flame 2020, 217, 77–84. DOI: 10.1016/j.combustflame.2020.03.035.
  • Liu, Y.; Fan, C.; Wang, X.; Liu, F.; Chen, H. Thermally Induced Variations in the Nanostructure and Reactivity of Soot Particles Emitted from a Diesel Engine. Chemosphere 2022, 286, 131712. DOI: 10.1016/j.chemosphere.2021.131712.
  • Liang, X.; Lv, X.; Wang, Y.; He, L.; Wang, Y.; Fu, K.; Liu, Q.; Wang, K. Experimental Investigation of Diesel Soot Oxidation Reactivity along the Exhaust after-Treatment System Components. Fuel 2021, 302, 121047. DOI: 10.1016/j.fuel.2021.121047.
  • Vander Wal, R. L.; Mueller, C. J. Initial Investigation of Effects of Fuel Oxygenation on Nanostructure of Soot from a Direct-Injection Diesel Engine. Energy Fuels 2006, 20, 2364–2369. DOI: 10.1021/ef060201+.
  • Fayad, M. A.; Herreros, J. M.; Martos, F. J.; Tsolakis, A. Role of Alternative Fuels on Particulate Matter (PM) Characteristics and Influence of the Diesel Oxidation Catalyst. Environ. Sci. Technol. 2015, 49, 11967–11973. DOI: 10.1021/acs.est.5b02447.
  • Agudelo, J. R.; Álvarez, A.; Armas, O. Impact of Crude Vegetable Oils on the Oxidation Reactivity and Nanostructure of Diesel Particulate Matter. Combust. Flame 2014, 161, 2904–2915. DOI: 10.1016/j.combustflame.2014.05.013.
  • Verma, P.; Pickering, E.; Jafari, M.; Guo, Y.; Stevanovic, S.; Fernando, J. F. S.; Golberg, D.; Brooks, P.; Brown, R.; Ristovski, Z. Influence of Fuel-Oxygen Content on Morphology and Nanostructure of Soot Particles. Combust. Flame 2019, 205, 206–219. DOI: 10.1016/j.combustflame.2019.04.009.
  • Savic, N.; Rahman, M. M.; Miljevic, B.; Saathoff, H.; Naumann, K. H.; Leisner, T.; Riches, J.; Gupta, B.; Motta, N.; Ristovski, Z. D. Influence of Biodiesel Fuel Composition on the Morphology and Microstructure of Particles Emitted from Diesel Engines. Carbon 2016, 104, 179–189. DOI: 10.1016/j.carbon.2016.03.061.
  • Merchan-Merchan, W.; Sanmiguel, S. G.; McCollam, S. Analysis of Soot Particles Derived from Biodiesels and Diesel Fuel Air-Flames. Fuel 2012, 102, 525–535. DOI: 10.1016/j.fuel.2012.04.029.
  • Hirner, F. S.; Hwang, J.; Bae, C.; Patel, C.; Gupta, T.; Agarwal, A. K. Nanostructure Characterization of Soot Particles from Biodiesel and Diesel Spray Flame in a Constant Volume Combustion Chamber. Fuel 2019, 235, 130–149. DOI: 10.1016/j.fuel.2018.07.092.
  • Hwang, J.; Hirner, F. S.; Bae, C.; Patel, C.; Gupta, T.; Agarwal, A. K. HRTEM Evaluation of Primary Soot Particles Originated in a Small-Bore Biofuel Compression-Ignition Engine. Appl. Therm. Eng. 2019, 159, 113899. DOI: 10.1016/j.applthermaleng.2019.113899.
  • Soriano, J. A.; Agudelo, J. R.; López, A. F.; Armas, O. Oxidation Reactivity and Nanostructural Characterization of the Soot Coming from Farnesane - a Novel Diesel Fuel Derived from Sugar Cane. Carbon 2017, 125, 516–529. DOI: 10.1016/j.carbon.2017.09.090.
  • Raj, A.; Tayouo, R.; Cha, D.; Li, L.; Ismail, M. A.; Chung, S. H. Thermal Fragmentation and Deactivation of Combustion-Generated Soot Particles. Combust. Flame 2014, 161, 2446–2457. DOI: 10.1016/j.combustflame.2014.02.010.
  • Salamanca, M.; Mondragón, F.; Agudelo, J. R.; Benjumea, P.; Santamaría, A. Variations in the Chemical Composition and Morphology of Soot Induced by the Unsaturation Degree of Biodiesel and a Biodiesel Blend. Combust. Flame 2012, 159, 1100–1108. DOI: 10.1016/j.combustflame.2011.10.011.
  • Mawhinney, D. B.; Yates, J. T. FTIR Study of the Oxidation of Amorphous Carbon by Ozone at 300 K — Direct COOH Formation. Carbon 2001, 39, 1167–1173. DOI: 10.1016/S0008-6223(00)00238-4.
  • Burtscher, H. Physical Characterization of Particulate Emissions from Diesel Engines: A Review. J. Aerosol Sci. 2005, 36, 896–932. DOI: 10.1016/j.jaerosci.2004.12.001.
  • Zerda, T. W.; Yuan, X.; Moore, S. M.; Leon y Leon, C. A. Surface Area, Pore Size Distribution and Microstructure of Combustion Engine Deposits. Carbon 1999, 37, 1999–2009. DOI: 10.1016/S0008-6223(99)00068-8.
  • Kandas, A. W.; Gokhan Senel, I.; Levendis, Y.; Sarofim, A. F. Soot Surface Area Evolution during Air Oxidation as Evaluated by Small Angle X-Ray Scattering and CO2 Adsorption. Carbon 2005, 43, 241–251. DOI: 10.1016/j.carbon.2004.08.028.
  • Seong, H.; Choi, S. Oxidation-Derived Maturing Process of Soot, Dependent on O2-NO2 Mixtures and Temperatures. Carbon 2015, 93, 1068–1076. DOI: 10.1016/j.carbon.2015.07.008.
  • Gaddam, C. K.; Vander Wal, R. L.; Chen, X.; Yezerets, A.; Kamasamudram, K. Reconciliation of Carbon Oxidation Rates and Activation Energies Based on Changing Nanostructure. Carbon 2016, 98, 545–556. DOI: 10.1016/j.carbon.2015.11.035.
  • Lee, S.-M.; Roh, J.-S. Pore Development Process according to Burn-Off of Activated Carbon Black with CO2 Gas. Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 808–814. DOI: 10.1080/1536383X.2020.1763316.
  • Chang, Q.; Gao, R.; Gao, M.; Yu, G.; Mathews, J. P.; Wang, F. Experimental Analysis of the Evolution of Soot Structure during CO2 Gasification. Fuel 2020, 265, 116699. DOI: 10.1016/j.fuel.2019.116699.
  • Wei, L.; Cheung, C. S.; Ning, Z. Influence of Waste Cooking Oil Biodiesel on the Nanostructure and Volatility of Particles Emitted by a Direct-Injection Diesel Engine. Aerosol Sci. Technol. 2016, 50, 893–905. DOI: 10.1080/02786826.2016.1203390.
  • Ye, P.; Sun, C.; Lapuerta, M.; Agudelo, J.; Vander Wal, R.; Boehman, A. L.; Toops, T. J.; Daw, S. Impact of Rail Pressure and Biodiesel Fueling on the Particulate Morphology and Soot Nanostructures from a Common-Rail Turbocharged Direct Injection Diesel Engine. Int. J. Engine Res. 2016, 17, 193–208. DOI: 10.1177/1468087414564229.
  • Pahalagedara, L.; Sharma, H.; Kuo, C.-H.; Dharmarathna, S.; Joshi, A.; Suib, S. L.; Mhadeshwar, A. B. Structure and Oxidation Activity Correlations for Carbon Blacks and Diesel Soot. Energy Fuels 2012, 26, 6757–6764. DOI: 10.1021/ef301331b.
  • Chang, Q.; Gao, R.; Gao, M.; Yu, G.; Wang, F. The Structural Evolution and Fragmentation of Coal-Derived Soot and Carbon Black during High-Temperature Air Oxidation. Combust. Flame 2020, 216, 111–125. DOI: 10.1016/j.combustflame.2019.11.045.
  • Jaramillo, I. C.; Gaddam, C. K.; Vander Wal, R. L.; Lighty, J. S. Effect of Nanostructure, Oxidative Pressure and Extent of Oxidation on Model Carbon Reactivity. Combust. Flame 2015, 162, 1848–1856. DOI: 10.1016/j.combustflame.2014.12.006.
  • Еlesina, V. I.; Churilov, G. N.; Vnukova, N. G.; Nikolaev, N. S.; Glushenko, G. A.; Isakova, V. G. Mechanical Activation of Fullerene Containing Soot during Extraction of Higher and Endohedral Metallofullerenes. Fuller. Nanotub. Carbon Nanostruct. 2022, 30, 553–558. DOI: 10.1080/1536383X.2021.1966421.
  • Wu, W.; Cai, J.; Liu, R. Isoconversional Kinetic Analysis of Distributed Activation Energy Model Processes for Pyrolysis of Solid Fuels. Ind. Eng. Chem. Res. 2013, 52, 14376–14383. DOI: 10.1021/ie4021123.
  • Vyazovkin, S.; Burnham, A. K.; Criado, J. M.; Pérez-Maqueda, L. A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data. Thermochim. Acta 2011, 520, 1–19. DOI: 10.1016/j.tca.2011.03.034.
  • Wang, X.; Li, S.; Adeosun, A.; Li, Y.; Vujanović, M.; Tan, H.; Duić, N. Effect of Potassium-Doping and Oxygen Concentration on Soot Oxidation in O2/CO2 Atmosphere: A Kinetics Study by Thermogravimetric Analysis. Energy Conv. Manag 2017, 149, 686–697. DOI: 10.1016/j.enconman.2017.01.003.
  • Yoshio, S.; Tatami, J.; Yamakawa, T.; Wakihara, T.; Komeya, K.; Meguro, T.; Aramaki, K.; Yasuda, K. Dispersion of Carbon Nanotubes in Ethanol by a Bead Milling Process. Carbon 2011, 49, 4131–4137. . DOI: 10.1016/j.carbon.2011.05.033.
  • Darsono, N.; Yoon, D.-H.; Kim, J. Milling and Dispersion of Multi-Walled Carbon Nanotubes in Texanol. Appl. Surf. Sci. 2008, 254, 3412–3419. . DOI: 10.1016/j.apsusc.2007.11.028.
  • Wal, R. L. V. Soot Nanostructure: Definition, Quantification and Implications. SAE Trans. 2005, 114, 429–436. [Online]. Available: http://www.jstor.org/stable/44720970.
  • Vander Wal, R. L.; Tomasek, A. J.; Pamphlet, M. I.; Taylor, C. D.; Thompson, W. K. Analysis of HRTEM Images for Carbon Nanostructure Quantification. J. Nanopart. Res. 2004, 6, 555–568. DOI: 10.1007/s11051-004-3724-6.
  • Kupgan, G.; Liyana-Arachchi, T. P.; Colina, C. M. NLDFT Pore Size Distribution in Amorphous Microporous Materials. Langmuir 2017, 33, 11138–11145. DOI: 10.1021/acs.langmuir.7b01961.
  • Ghiassi, H.; Jaramillo, I. C.; Toth, P.; Lighty, J. S. Soot Oxidation-Induced Fragmentation: Part 2: Experimental Investigation of the Mechanism of Fragmentation. Combust. Flame 2016, 163, 170–178. DOI: 10.1016/j.combustflame.2015.09.022.
  • Ghiassi, H.; Toth, P.; Jaramillo, I. C.; Lighty, J. S. Soot Oxidation-Induced Fragmentation: Part 1: The Relationship between Soot Nanostructure and Oxidation-Induced Fragmentation. Combust. Flame 2016, 163, 179–187. DOI: 10.1016/j.combustflame.2015.09.023.
  • Cataldo, F.; Garcia-Hernandez, A. D.; Torres, A. M. Vinylacetylene Synthesis with a Low Power Submerged Carbon Arc in N-Hexane. Fuller. Nanotub. Carbon Nanostruct. 2021, 29, 956–965. DOI: 10.1080/1536383X.2021.1920580.
  • Lugvishchuk, D. S.; Mordkovich, V. Z.; Mitberg, E. B.; Karaeva, A. R.; Kulnitskiy, B. A.; Kirichenko, A. N.; Polyakov, S. N. Natural Gas Partial Oxidation Process as a Way to Synthesize Onion-Like Carbon. Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 250–255. DOI: 10.1080/1536383X.2019.1697681.
  • Abdalla, A. O.; Liu, D.; Zhang, L.; Zhao, X.; Jiang, B.; He, X. Nanoscale Inspection on Carbon Particles from Commercial Rp-3 Kerosene Combustion with Different Dilutions. Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 959–972. DOI: 10.1080/1536383X.2020.1786817.
  • Strzelec, A.; Vander Wal, R. L.; Lewis, S. A.; Toops, T. J.; Daw, C. S. Nanostructure and Burning Mode of Light-Duty Diesel Particulate with Conventional Diesel, Biodiesel, and Intermediate Blends. Int. J. Engine Res. 2017, 18, 520–531. DOI: 10.1177/1468087416674414.
  • Ishiguro, T.; Suzuki, N.; Fujitani, Y.; Morimoto, H. Microstructural Changes of Diesel Soot during Oxidation. Combust. Flame 1991, 85, 1–6. DOI: 10.1016/0010-2180(91)90173-9.
  • Stanmore, B. R.; Brilhac, J. F.; Gilot, P. The Oxidation of Soot: A Review of Experiments, Mechanisms and Models. Carbon 2001, 39, 2247–2268. DOI: 10.1016/S0008-6223(01)00109-9.
  • Vander Wal, R. L.; Tomasek, A. J. Soot Nanostructure: Dependence upon Synthesis Conditions. Combust. Flame 2004, 136, 129–140. DOI: 10.1016/j.combustflame.2003.09.008.
  • Cataldo, F.; Putz, M. V.; Ursini, O.; Angelini, G.; Garcia-Hernandez, D. A.; Manchado, A. A New Route to Graphene Starting from Heavily Ozonized Fullerenes: Part 2—Oxidation in Air. Fuller. Nanotub. Carbon Nanostruct. 2016, 24, 62–66. DOI: 10.1080/1536383X.2015.1110697.
  • González, D.; Montes-Morán, M. A.; Suárez-Ruiz, I.; Garcia, A. B. Structural Characterization of Graphite Materials Prepared from Anthracites of Different Characteristics: A Comparative Analysis. Energy Fuels 2004, 18, 365–370. DOI: 10.1021/ef030144+.
  • Emmerich, F. G. Evolution with Heat Treatment of Crystallinity in Carbons. Carbon 1995, 33, 1709–1715. DOI: 10.1016/0008-6223(95)00127-8.
  • Carabali, G.; Castro, T.; De La Cruz, W.; Peralta, O.; Varela, A.; Amelines, O.; Rivera, M.; Ruiz-Suarez, G.; Torres-Jardón, R.; Martines-Quiroz, E.; et al. Morphological and Chemical Characterization of Soot Emitted during Flaming Combustion Stage of Native-Wood Species Used for Cooking Process in Western Mexico. J. Aerosol Sci. 2016, 95, 1–14. DOI: 10.1016/j.jaerosci.2016.01.008.
  • Peña, G. D. G.; Raj, A.; Stephen, S.; Anjana, T.; Hammid, Y. A. S.; Brito, J. L.; Shoaibi, A. A. Physicochemical Properties of Soot Generated from Toluene Diffusion Flames: Effects of Fuel Flow Rate. Combust. Flame 2017, 178, 286–296. DOI: 10.1016/j.combustflame.2017.01.009.
  • Zhang, H.; Li, S.; Jiao, Y.; Emil Iojoiu, E.; Da Costa, P.; Elena Galvez, M.; Chen, Y. Structure, Surface and Reactivity of Activated Carbon: From Model Soot to Bio Diesel Soot. Fuel 2019, 257, 116038. DOI: 10.1016/j.fuel.2019.116038.
  • Ma, Y.; Zhao, P.; Fang, M.; Hagio, T.; Li, X. Oxidation Evolutions of Soot Surface and Pore Properties with Different O2-NO2 Mixtures and Temperatures. Fuller. Nanotub. Carbon Nanostruct. 2022, 30, 1–9. DOI: 10.1080/1536383X.2022.2072831.
  • Hurt, R. H.; Sarofim, A. F.; Longwell, J. P. Gasification-Induced Densification of Carbons: From Soot to Form Coke. Combust. Flame 1993, 95, 430–432. DOI: 10.1016/0010-2180(93)90009-R.
  • Liu, W.; Qin, L.; An, Z.; Shi, W.; Chen, L.; Liu, X.; Yang, Y. Selective Adsorption and Separation of Dibenzothiophene by Molecularly Imprinted Polymer on the Surface of Porous Magnetic Carbon Nanospheres. Fuller. Nanotub. Carbon Nanostruct. 2019, 27, 14–22. DOI: 10.1080/1536383X.2018.1476346.
  • Rahman, M. M.; Muttakin, M.; Pal, A.; Shafiullah, A. Z.; Saha, B. B. A Statistical Approach to Determine Optimal Models for IUPAC-Classified Adsorption Isotherms. Energies 2019, 12, 4565. DOI: 10.3390/en12234565.
  • Tanis-Kanbur, M. B.; Peinador, R. I.; Calvo, J. I.; Hernández, A.; Chew, J. W. Porosimetric Membrane Characterization Techniques: A Review. J. Membr. Sci. 2021, 619, 118750. DOI: 10.1016/j.memsci.2020.118750.
  • Thommes, M. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2016, 38, 1051–1069. DOI: 10.1515/ci-2016-0119.
  • Abián, M.; Jensen, A. D.; Glarborg, P.; Alzueta, M. U. Soot Reactivity in Conventional Combustion and Oxy-Fuel Combustion Environments. Energy Fuels 2012, 26, 5337–5344. DOI: 10.1021/ef300670q.
  • Karin, P.; Borhanipour, M.; Songsaengchan, Y.; Laosuwan, S.; Charoenphonphanich, C.; Chollacoop, N.; Hanamura, K. Oxidation Kinetics of Small Ci Engine’s Biodiesel Particulate Matter. Int. J. Automot. Technol. 2015, 16, 211–219. DOI: 10.1007/s12239-015-0023-4.
  • Müller, J. O.; Su, D. S.; Jentoft, R. E.; Kröhnert, J.; Jentoft, F. C.; Schlögl, R. Morphology-Controlled Reactivity of Carbonaceous Materials towards Oxidation. Catal. Today 2005, 102-103, 259–265. DOI: 10.1016/j.cattod.2005.02.025.
  • Tapia, A.; Salgado, S.; Martín, P.; Villanueva, F.; García-Contreras, R.; Cabañas, B. Chemical Composition and Heterogeneous Reactivity of Soot Generated in the Combustion of Diesel and Gtl (Gas-to-Liquid) Fuels and Amorphous Carbon Printex U with No2 and Cf3cooh Gases. Atmos. Environ. 2018, 177, 214–221. DOI: 10.1016/j.atmosenv.2018.01.028.
  • Schobing, J.; Tschamber, V.; Brillard, A.; Leyssens, G. Impact of Biodiesel Impurities on Carbon Oxidation in Passive Regeneration Conditions: Influence of the Alkali Metals. Appl. Catal. B-Environ. 2018, 226, 596–607. DOI: 10.1016/j.apcatb.2017.12.011.
  • Senneca, O.; Salatino, P.; Menghini, D. The Influence of Thermal Annealing on Oxygen Uptake and Combustion Rates of a Bituminous Coal Char. Proc. Combust. Inst. 2007, 31, 1889–1895. DOI: 10.1016/j.proci.2006.07.071.
  • Radović, L. R.; Walker, P. L.; Jenkins, R. G. Importance of Carbon Active Sites in the Gasification of Coal Chars. Fuel 1983, 62, 849–856. DOI: 10.1016/0016-2361(83)90041-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.