274
Views
4
CrossRef citations to date
0
Altmetric
Articles

One step synthesis of NiCo-LDH/CoNi2S4/rGO composite on Ni foam for asymmetric supercapacitor

ORCID Icon &
Pages 327-335 | Received 30 Aug 2022, Accepted 23 Nov 2022, Published online: 15 Dec 2022

References

  • Dubey, R.; Guruviah, V. Review of Carbon-Based Electrode Materials for Supercapacitor Energy Storage. Ionics 2019, 25, 1419–1445. DOI: 10.1007/s11581-019-02874-0.
  • Iro, Z. S.; Subramani, C.; Dash, S. S. A Brief Review on Electrode Materials for Supercapacitor. Int. J. Electrochem. Soc 2016, 11, 10628–10643.
  • Padalkar, N. S.; Sadavar, S. V.; Shinde, R. B.; Patil, A. S.; Patil, U. M.; Dhawale, D. S.; Bulakhe, R. N.; Kim, H.; Im, H.; Vinu, A.; et al. Layer-by-Layer Nanohybrids of Ni-Cr-LDH Intercalated with 0D Polyoxotungstate for Highly Efficient Hybrid Supercapacitor. J. Colloid Interface Sci. 2022, 616, 548–559.
  • Yang, Y. J.; Li, W. Hierarchical Ni-Co Double Hydroxide Nanosheets on Reduced Graphene Oxide Self-Assembled on Ni Foam for High-Energy Hybrid Supercapacitors. J. Alloys Compds. 2019, 776, 543–553. DOI: 10.1016/j.jallcom.2018.10.344.
  • Li, Z. M.; Yao, M. X.; Hu, Z. A.; Zhang, L. T.; Gou, S. Q.; Feng, H.; Yang, Y. Y. X.; Lu, Q. g-C3N4 Promoted NiFe-LDH Self-Assemble High Performance Supercapacitor Composites. J. Alloys Compds. 2022, 919, 165805. DOI: 10.1016/j.jallcom.2022.165805.
  • Yang, Y. J.; Li, W. The Composite of 3D Carbon Nanotube Architecture and NiCo Double Hydroxide for High-Performance Supercapacitor. Ionics 2020, 26, 4685–4694. DOI: 10.1007/s11581-020-03623-4.
  • Li, A.; Yi, M.; Zhao, S. M.; Luan, M. X.; Hu, J. B. Hierarchical CuCo Carbonate Hydroxide Nanowires@FeCo-Layered Double Hydroxide Hexagonal Nanosheets of Penetrating Architecture for High-Performance Asymmetric Supercapacitor. Batteries Supercaps 2022, 5, e202200026.
  • Yang, Y. J. Acetamide-Assisted Hydrothermal Growth of NiCo Double Hydroxide on Graphene Modified Ni Foam for High-Performance Supercapacitor. J. Appl. Electrochem. 2020, 50, 1301–1313. DOI: 10.1007/s10800-020-01473-6.
  • El-Deen, A. G.; Abdel-Sattar, M. K.; Allam, N. K. High-Performance Solid-State Supercapacitor Based on Ni-Co Layered Double Hydroxide@Co3O4 Nanocubes and Spongy Graphene Electrodes. Appl. Surface Sci. 2022, 587, 152548. DOI: 10.1016/j.apsusc.2022.152548.
  • Yang, Y. J.; Li, W. Hierarchical Nanoflake-Assembled Flower-like NiCo Double Hydroxide@NiC2O4 Microspheres for High-Performance Supercapacitor. Mater. Tech. 2019, 34, 571–580. DOI: 10.1080/10667857.2019.1603615.
  • Yang, Y. J.; Chen, S.; Jiang, C.; Yang, P.; Wang, N.; Cheng, Y.; Liu, M. Hierarchical Web-like NiFeMn Ternary Hydroxides Microstructure Assembled on Reduced Graphene Oxide for Binder-Free Supercapacitor Electrode. Diamond Related Mater. 2022, 125, 109009. DOI: 10.1016/j.diamond.2022.109009.
  • Bommireddy, P. R.; Sekhar, M. C.; Lee, Y. W.; Kumar, M.; Suh, Y.; Park, S. H. Binder-Free Co-Ni Hexacyanoferrate as a Battery-Type Electrode Material for Hybrid Supercapacitors. Ceramics Int. 2022, 48, 11849–11857. DOI: 10.1016/j.ceramint.2022.01.055.
  • Yang, Y. J.; Li, Y.; Ding, X.; Zhang, C.; Ren, H.; Guo, F.; Dong, J. Synthesis of Nickel Hexacyanoferrate Nanostructure on Carbon Cloth with Predeposited Nickel Nanoparticles as Precursor for Binder-Free High-Performance Supercapacitor Electrodes. J. Alloys Compds. 2021, 871, 159510. DOI: 10.1016/j.jallcom.2021.159510.
  • Yang, Y. J.; Dong, J.; Zhang, C.; Ding, X.; Li, Y.; Ren, H.; Guo, F. Phosphotungstic Acid Assisted Growth of Nickel Hexacyanoferrate on Ni Foam for Binder-Free Supercapacitor Electrode. J. Electroanal. Chem. 2021, 895, 115537. DOI: 10.1016/j.jelechem.2021.115537.
  • Choi, J.; Lee, J.; Lim, J.; Park, S.; Piao, Y. PEDOT/Cobalt Hexacyanoferrate Free-Standing Films for High-Performance Quasi-Solid-State Asymmetric Supercapacitor. J. Alloys Compds. 2022, 914, 165365. DOI: 10.1016/j.jallcom.2022.165365.
  • Yang, Y. J.; Liu, M.; Jiang, C.; Yang, P.; Wang, N.; Chen, S.; Cheng, Y. One-Step Hydrothermal Growth of Reduced Graphene Oxide/Nickel Hexacyanoferrate Nanocomposite on Ni Foam for Binder-Free Supercapacitor Electrode. J. Energy Storage 2021, 44, 103462. DOI: 10.1016/j.est.2021.103462.
  • Yang, Y. J.; Jiang, C.; Wang, N.; Chen, S.; Cheng, Y.; Yang, P.; Liu, M. In-Situ Hydrothermal Growth of Manganese Hexacyanoferrate with Ni Foam as the Sacrificing Template for High-Performance Asymmetrical Supercapacitor. Ionics 2022, 28, 2957–2966. DOI: 10.1007/s11581-022-04538-y.
  • Yang, Y. J.; Wang, N.; Chen, S.; Jiang, C.; Yang, P.; Liu, M.; Cheng, Y. The Synthesis of Ni/Mn Hexacyanoferrate Microcubes and Nanorods for High-Performance Asymmetric Supercapacitor in Neutral Electrolyte. Int. J. Energy Res. 2022, 46, 14283–14294. DOI: 10.1002/er.8141.
  • Deng, B. W.; Yang, Y.; Liu, Y. X.; Yin, B.; Yang, M. B. A Hierarchically Combined Reduced Graphene Oxide/Nickel Oxide Hybrid Supercapacitor Device Demonstrating Compliable Flexibility and High Energy Density. J. Colloid Interface Sci. 2022, 618, 399–410.
  • Yang, Y. J.; Cheng, Y.; Liu, M.; Jiang, C.; Yang, P.; Wang, N.; Chen, S. The Facile Conversion of Iron Foam into Copper-Coated 3D Porous Cobalt Ferrite/Iron Foam for High-Performance Asymmetric Hybrid Supercapacitor. J. Alloys Compds. 2021, 888, 161603. DOI: 10.1016/j.jallcom.2021.161603.
  • Samuel, E.; Aldalbahi, A.; El-Newehy, M.; El-Hamshary, H.; Yoon, S. S. Flexible and Freestanding Manganese/Iron Oxide Carbon Nanofibers for Supercapacitor Electrodes. Ceramics Int. 2022, 48, 18374–18383. DOI: 10.1016/j.ceramint.2022.03.106.
  • Jun Yang, Y.; Jiang, C.; Chen, S.; Wang, N.; Yang, P.; Liu, M.; Cheng, Y. Direct Growth of Hierarchical CoFe2O4 Flower-like Nanoflake Arrays on Ni Foam for High Performance Asymmetrical Supercapacitor. J. Electroanal. Chem. 2022, 918, 116385. DOI: 10.1016/j.jelechem.2022.116385.
  • Tanapongpisit, N.; Wongprasod, S.; Laohana, P.; Kim, S.; Butburee, T.; Meevasana, W.; Maensiri, S.; Bark, C. W.; Saenrang, W. Effects of the Particle Size of BaMnO3 Powders on the Electrochemical Performance of Supercapacitor Electrodes. Mater. Lett. 2022, 319, 132258. DOI: 10.1016/j.matlet.2022.132258.
  • Liu, H. J.; Zhao, Q.; Wang, K. W.; Lu, Z.; Feng, F.; Guo, Y. One-Step Synthesis of PPyNT/NiOx Nanocomposites via Microwave Method and Application for Supercapacitor. Fuller. Nanotub. Carbon Nanostruct. 2019, 27, 661–668. DOI: 10.1080/1536383X.2019.1596897.
  • Liu, H. J.; Lu, Z.; Qin, J.; Wang, K. W.; Feng, F.; Guo, Y. Microwave Rapid Synthesis of CuxO@Polypyrrole Nanofibre (PpyNF) Composites for Supercapacitors. Fuller. Nanotub. Carbon Nanostruct. 2019, 27, 947–952. DOI: 10.1080/1536383X.2019.1666366.
  • Luo, W. J.; Xue, H. The Synthesis and Electrochemical Performance of NiCo2O4 Embedded Carbon Nanofibers for High-Performance Supercapacitors. Fuller. Nanotub. Carbon Nanostruct. 2019, 27, 189–197. DOI: 10.1080/1536383X.2018.1538131.
  • Zhang, S. F.; Ren, J.; Gu, T.; Guo, H.; Wang, H. Q.; Imran, M.; Ren, R. P.; Lv, Y. K. Porous NiCoS Nanosheets Decorated Activated Carbon Cloth for Flexible Asymmetric Supercapacitors. Diamond Related Mater. 2022, 127, 109154. DOI: 10.1016/j.diamond.2022.109154.
  • Zhang, J. X.; Deng, Y.; Wu, Y. Q.; Xiao, Z. Y.; Liu, X. B.; Li, Z. J.; Bu, R. R.; Zhang, Q.; Sun, W.; Wang, L. Chemically Coupled 0D-3D Hetero-Structure of Co9S8-Ni3S4 Hollow Spheres for Zn-Based Supercapacitors. Chem. Eng. J. 2022, 430, 132836. DOI: 10.1016/j.cej.2021.132836.
  • Yang, Y. J.; Yao, C.; Chen, S.; Wang, N.; Yang, P.; Jiang, C.; Liu, M.; Cheng, Y. A 3D Flower-like CoNi2S4/Carbon Nanotube Nanosheet Arrays Grown on Ni Foam as a Binder-Free Electrode for Asymmetric Supercapacitors. J. Electroanal. Chem. 2021, 888, 115217. DOI: 10.1016/j.jelechem.2021.115217.
  • Zhao, X. Y.; Ma, Q. X.; Tao, K.; Han, L. ZIF-Derived Porous CoNi2S4 on Intercrosslinked Polypyrrole Tubes for High-Performance Asymmetric Supercapacitors. ACS Appl. Energy Mater. 2021, 4, 4199–4207.
  • Xiong, W. H.; Huang, H. F.; Yang, S. M.; Wu, Z. K.; Zou, Y. H.; Zhou, W. P.; Cheng, Z. Z.; Wang, J.; Liu, D. B.; Luo, G. S. Construction of Porous NiCo2S4 Hierarchical Nanoflakes Based on Zeolitic Imidazolate Frameworks as Battery-Type Electrodes for High Performance Supercapacitors. J. Energy Storage 2022, 47, 103583. DOI: 10.1016/j.est.2021.103583.
  • Zhang, J.; Liu, X. X.; Yin, Q.; Zhao, Y. J.; Luo, J. N.; Han, J. B. CoNi2S4 Nanoplate Arrays Derived from Hydroxide Precursors for Flexible Fiber-Shaped Supercapacitors. ACS Omega 2019, 4, 11863–11870. DOI: 10.1021/acsomega.9b01374.
  • Zhu, J. S.; Han, C. C.; Song, X. Y. Facile Synthesis of Novel CoNi2S4/Carbon Nanofibers Composite for High-Performance Supercapacitor. Mater. Chem. Phys. 2022, 283, 126038. DOI: 10.1016/j.matchemphys.2022.126038.
  • Duan, Z. C.; Shi, X. R.; Sun, C. Y.; Lin, W. S.; Huang, S. M.; Zhang, X. R.; Huang, M. R.; Yang, Z.; Xu, S. S. Interface Engineered Hollow Co3O4@CoNi2S4 Nanostructure for High Efficiency Supercapacitor and Hydrogen Evolution. Electrochim. Acta 2022, 412, 140139. DOI: 10.1016/j.electacta.2022.140139.
  • Farshadnia, M. A.; Ensafi, A. A.; Mousaabadi, K. Z.; Rezaei, B. Design and Synthesis of Three-Dimensional CoNi2S4@MoS2@rGO Nanocomposites and Its Application in Electrochemical Supercapacitors. J. Alloys Compds 2022, 906, 164278. DOI: 10.1016/j.jallcom.2022.164278.
  • Yang, Y. J. Facile Preparation of CuS-Coated Multiwalled Carbon Nanotubes for Supercapacitor Application: A Study on the Effect of Electrolyte. Fuller. Nanotub. Carbon Nanostruct. 2017, 25, 497–503. DOI: 10.1080/1536383X.2017.1344836.
  • Chang, J. L.; Zang, S. Q.; Liang, W. F.; Wu, D. P.; Lian, Z. X.; Xu, F.; Jiang, K.; Gao, Z. Y. Enhanced Faradic Activity by Construction of p-n Junction within Reduced Graphene Oxide@Cobalt Nickel Sulfide@Nickle Cobalt Layered Double Hydroxide Composite Electrode for Charge Storage in Hybrid Supercapacitor. J Colloid Interface Sci. 2021, 590, 114–124.
  • Wang, L.; Zhou, N. Construction of Sulfide Nanoparticles on Hydrangea-like Nickel-Cobalt Hydroxide for Enhanced Pseudocapacitance. J. Energy Storage 2022, 53, 105097. DOI: 10.1016/j.est.2022.105097.
  • Zhang, K.; Zeng, H. Y.; Wang, M. X.; Li, H. B.; Yan, W.; Wang, H. B.; Tang, Z. H. 3D Hierarchical Core-Shell Structural NiCoMoS@NiCoAl Hydrotalcite for High-Performance Supercapacitors. J. Mater. Chem. A. 2022, 10, 11213–11224. DOI: 10.1039/D2TA00782G.
  • Cheng, C.; Zou, Y. J.; Xu, F.; Xiang, C. L.; Sui, Q. L.; Zhang, J.; Sun, L. X.; Chen, Z. M. Ultrathin Graphene@NiCo2S4@Ni-Mo Layered Double Hydroxide with a 3D Hierarchical Flowers Structure as a High Performance Positive Electrode for Hybrid Supercapacitor. J. Energy Storage 2022, 52, 105049. DOI: 10.1016/j.est.2022.105049.
  • Shi, M. M.; Zhao, M. S.; Jiao, L. D.; Su, Z.; Li, M.; Song, X. P. Novel Mo-Doped Nickel Sulfide Thin Sheets Decorated with Ni-Co Layered Double Hydroxide Sheets as an Advanced Electrode for Aqueous Asymmetric Super-Capacitor Battery. J. Power Sources 2021, 509, 230333. DOI: 10.1016/j.jpowsour.2021.230333.
  • Li, P. F.; Liu, X. Q.; Arif, M.; Yan, H. L.; Hu, C. Y.; Chen, S. M.; Liu, X. H. In Situ Growth of Glucose-Intercalated LDHs on NiCo2S4 Hollow Nanospheres to Enhance Energy Storage Capacity for Hybrid Supercapacitors. Colloids Surfaces A. 2022, 644, 128823. DOI: 10.1016/j.colsurfa.2022.128823.
  • Kim, K. S.; Shinde, N. M.; Yun, J. M.; Kim, K. H. Sulfur and Phosphorus co-Doped Nickel-Cobalt Layered Double Hydroxides for Enhancing Electrochemical Reactivity and Supercapacitor Performance. RSC Adv. 2021, 11, 12449–12459. DOI: 10.1039/d1ra00424g.
  • Liu, G. Q.; Wang, G. R.; Guo, X.; Hao, X. Q.; Jin, Z. L. Toilless Sulfuration Route to Enhance the Supercapacitor Performance of Nanoflower-like NiAl-Layered Double Hydroxide. J. Electroanal. Chem. 2022, 916, 116368. DOI: 10.1016/j.jelechem.2022.116368.
  • Lee, M. H.; Bandyopadhyay, P.; Jin, E. M.; Baasanjav, E.; Kang, D. W.; Jeong, S. M. Cathode of Zn-Ni Layered Double Hydroxide Nanosheet Arrays Wrapped with a Porous NiMoSx Shell and Anode of 3D Hierarchical Nitrogen-Doped Carbon for High-Performance Asymmetric Supercapacitors. ACS Appl. Energy Mater. 2021, 4, 9166–9177. DOI: 10.1021/acsaem.1c01412.
  • Xu, J.; Cao, H. D.; Ni, C. Y.; Wang, Y.; Cao, J. Y.; Chen, Z. D. Design and Synthesis of Sandwich-Like CoNi2S4@C@NiCo-LDH Microspheres for Supercapacitors. J. Solid State Electrochem. 2019, 23, 1513–1522. DOI: 10.1007/s10008-019-04246-0.
  • Li, W.; Yang, Y. J. The Reduction of Graphene Oxide by Elemental Copper and Its Application in the Fabrication of Grapheme Supercapacitor. J. Solid State Electrochem. 2014, 18, 1621–1626. DOI: 10.1007/s10008-014-2391-5.
  • Bai, Y.; Wang, W.; Wang, R.; Sun, J.; Gao, L. Controllable Synthesis of 3D Binary Nickel–Cobalt Hydroxide/Graphene/Nickel Foam as a Binder-Free Electrode for High-Performance Supercapacitors. J. Mater. Chem. A. 2015, 3, 12530–12538. DOI: 10.1039/C5TA01804H.
  • Xiong, G.; He, P.; Liu, L.; Chen, T.; Fisher, T. S. Plasma-Grown Graphene Petals Templating Ni–Co–Mn Hydroxide Nanoneedles for High-Rate and Long Cycle-Life Pseudocapacitive Electrodes. J. Mater. Chem. A. 2015, 3, 22940–22948. DOI: 10.1039/C5TA05441A.
  • Jana, M.; Saha, S.; Samanta, P.; Murmu, N. C.; Kim, N. H.; Kuila, T.; Lee, J. H. Growth of Ni–Co Binary Hydroxide on a Reduced Graphene Oxide Surface by a Successive Ionic Layer Adsorption and Reaction (SILAR) Method for High Performance Asymmetric Supercapacitor Electrodes. J. Mater. Chem. A. 2016, 4, 2188–2197. DOI: 10.1039/C5TA10297A.
  • Grote, F.; Yu, Z.-Y.; Wang, J.-L.; Yu, S.-H.; Lei, Y. Self-Stacked Reduced Graphene Oxide Nanosheets Coated with Cobalt-Nickel Hydroxide by One-Step Electrochemical Deposition toward Flexible Electrochromic Supercapacitors. Small 2015, 11, 4666–4672. DOI: 10.1002/smll.201501037.
  • Wang, X.; Song, T. Buckypaper Templating Ni–Co Hydroxide Nanosheets as Free-Standing Electrodes for Ultrathin and Flexible Supercapacitors. New J. Chem. 2016, 40, 8006–8011. DOI: 10.1039/C6NJ01470D.
  • Jabeen, M.; Ishaq, M.; Song, W.; Xu, L.; Deng, Q. Synthesis of Ni/Co/Al-Layered Triple Hydroxide@Brominated Graphene Hybrid on Nickel Foam as Electrode Material for High-Performance Supercapacitors. RSC Adv. 2017, 7, 46553–46565. DOI: 10.1039/C7RA08744F.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.