183
Views
0
CrossRef citations to date
0
Altmetric
Articles

Fluorinated carbon nanotubes as nonvolatile additive to the active layer of polymer/fullerene solar cells

, , , , ORCID Icon, ORCID Icon, , & show all
Pages 464-473 | Received 27 Oct 2022, Accepted 08 Feb 2023, Published online: 25 Feb 2023

References

  • Deibel, C.; Dyakonov, V. Polymer–Fullerene Bulk Heterojunction Solar Cells. Rep. Prog. Phys. 2010, 73, 096401. DOI: 10.1088/0034-4885/73/9/096401.
  • Nelson, J. Polymer:Fullerene Bulk Heterojunction Solar Cells. Mater. Today 2011, 14, 462–470. DOI: 10.1016/S1369-7021(11)70210-3.
  • Park, J. S.; Kim, G.; Lee, S.; Lee, J.; Li, S.; Lee, J.; Kim, B. J. Material Design and Device Fabrication Strategies for Stretchable Organic Solar Cells. Adv. Mater. 2022, 34, 2201623. DOI: 10.1002/adma.202201623.
  • Jee, M. H.; Ryu, H. S.; Lee, D.; Lee, W.; Woo, H. Y. Recent Advances in Nonfullerene Acceptor‐Based Layer‐by‐Layer Organic Solar Cells Using a Solution Process. Adv. Sci. 2022, 9, 2201876. DOI: 10.1002/advs.202201876.
  • Liang, Q.; Hu, Z.; Yao, J.; Yin, Y.; Wei, P.; Chen, Z.; Li, W.; Liu, J. Recent Advances in Intermixed Phase of Organic Solar Cells: Characterization, Regulating Strategies and Device Applications. J. Polym. Sci. 2021, 60, 917–944. DOI: 10.1002/pol.20210642.
  • Morvillo, P.; Bobeico, E. Bisadducts of C70as Electron Acceptors for Bulk Heterojunction Solar Cells: A Theoretical Study. Fuller. Nanotub. Carbon Nanostructures 2011, 19, 410–420. DOI: 10.1080/15363831003721880.
  • Kymakis, E.; Amaratunga, G. A. J. Single-Wall Carbon Nanotube/Conjugated Polymer Photovoltaic Devices. Appl. Phys. Lett. 2002, 80, 112–114. DOI: 10.1063/1.1428416.
  • Geng, J.; Zeng, T. Influence of Single-Walled Carbon Nanotubes Induced Crystallinity Enhancement and Morphology Change on Polymer Photovoltaic Devices. J. Am. Chem. Soc. 2006, 128, 16827–16833. DOI: 10.1021/ja065035z.
  • Wieland, L.; Li, H.; Rust, C.; Chen, J.; Flavel, B. S. Carbon Nanotubes for Photovoltaics: From Lab to Industry. Adv. Energy Mater. 2020, 11, 2002880. DOI: 10.1002/aenm.202002880.
  • Ye, Y.; Bindl, D. J.; Jacobberger, R. M.; Wu, M.-Y.; Roy, S. S.; Arnold, M. S. Semiconducting Carbon Nanotube Aerogel Bulk Heterojunction Solar Cells. Small 2014, 10, 3299–3306. DOI: 10.1002/smll.201400696.
  • Ren, S.; Bernardi, M.; Lunt, R. R.; Bulovic, V.; Grossman, J. C.; Gradečak, S. Toward Efficient Carbon Nanotube/P3HT Solar Cells: Active Layer Morphology, Electrical, and Optical Properties. Nano Lett. 2011, 11, 5316–5321. DOI: 10.1021/nl202796u.
  • Shastry, T. A.; Hersam, M. C. Carbon Nanotubes in Thin-Film Solar Cells. Adv. Energy Mater. 2016, 7, 1601205. DOI: 10.1002/aenm.201601205.
  • Holt, J. M.; Ferguson, A. J.; Kopidakis, N.; Larsen, B. A.; Bult, J.; Rumbles, G.; Blackburn, J. L. Prolonging Charge Separation in P3HT − SWNT Composites Using Highly Enriched Semiconducting Nanotubes. Nano Lett. 2010, 10, 4627–4633. DOI: 10.1021/nl102753z.
  • El-Moussawi, Z.; Nourdine, A.; Flandin, L. A Key Progress in Introducing Single Walled Carbon Nanotubes to Photovoltaic Devices. Appl. Nanosci. 2020, 12, 2277–2290. DOI: 10.1007/s13204-020-01561-1.
  • Wieland, L.; Li, H.; Rust, C.; Chen, J.; Flavel, B. S. Carbon Nanotubes: Carbon Nanotubes for Photovoltaics: From Lab to Industry (Adv. Energy Mater. 3/2021). Adv. Energy Mater. 2021, 11, 2170014. DOI: 10.1002/aenm.202170014.
  • Erten-Ela, S.; Cogal, S.; Cogal, G. C.; Oksuz, A. U. Highly Conductive Polymer Materials Based Multi-Walled Carbon Nanotubes as Counter Electrodes for Dye-Sensitized Solar Cells. Fuller. Nanotub. Carbon Nanostructures 2016, 24, 380–384. DOI: 10.1080/1536383X.2016.1165669.
  • Habisreutinger, S. N.; Noel, N. K.; Larson, B. W.; Reid, O. G.; Blackburn, J. L. Rapid Charge-Transfer Cascade through SWCNT Composites Enabling Low-Voltage Losses for Perovskite Solar Cells. ACS Energy Lett. 2019, 4, 1872–1879. DOI: 10.1021/acsenergylett.9b01041.
  • Jeon, I.; Matsuo, Y.; Maruyama, S. Single-Walled Carbon Nanotubes in Solar Cells. Top. Curr. Chem. (Cham) 2018, 376, 4. DOI: 10.1007/s41061-017-0181-0.
  • Salim, T.; Lee, H.-W.; Wong, L. H.; Oh, J. H.; Bao, Z.; Lam, Y. M. Semiconducting Carbon Nanotubes for Improved Efficiency and Thermal Stability of Polymer-Fullerene Solar Cells. Adv. Funct. Mater. 2015, 26, 51–65. DOI: 10.1002/adfm.201503256.
  • Derbal-Habak, H.; Bergeret, C.; Cousseau, J.; Nunzi, J. M. Improving the Current Density Jsc of Organic Solar Cells P3HT:PCBM by Structuring the Photoactive Layer with Functionalized SWCNTs. Sol. Energy Mater. Sol. Cells 2011, 95, S53–S56. DOI: 10.1016/j.solmat.2010.12.047.
  • Lee, J. M.; Lim, J.; Lee, N.; Park, H. I.; Lee, K. E.; Jeon, T.; Nam, S. A.; Kim, J.; Shin, J.; Kim, S. O. Synergistic Concurrent Enhancement of Charge Generation, Dissociation, and Transport in Organic Solar Cells with Plasmonic Metal-Carbon Nanotube Hybrids. Adv Mater. 2015, 27, 1519–1525. DOI: 10.1002/adma.201404248.
  • Ma, Y.-F.; Zhang, Y.; Zhang, H.-L. Solid Additives in Organic Solar Cells: Progress and Perspectives. J. Mater. Chem. C Mater. 2022, 10, 2364–2374. DOI: 10.1039/D1TC04224F.
  • Li, C.; Gu, X.; Chen, Z.; Han, X.; Yu, N.; Wei, Y.; Gao, J.; Chen, H.; Zhang, M.; Wang, A.; et al. Achieving Record-Efficiency Organic Solar Cells upon Tuning the Conformation of Solid Additives. J. Am. Chem. Soc. 2022, 144, 14731–14739. DOI: 10.1021/jacs.2c05303.
  • Jacobs, I. E.; Wang, F.; Bedolla Valdez, Z. I.; Ayala Oviedo, A. N.; Bilsky, D. J.; Moulé, A. J. Photoinduced Degradation from Trace 1,8-Diiodooctane in Organic Photovoltaics. J. Mater. Chem. C Mater. 2018, 6, 219–225. DOI: 10.1039/C7TC04358A.
  • Oh, J.; Jung, S.; Jeong, M.; Lee, B.; Lee, J.; Cho, Y.; Lee, S. M.; Chen, S.; Zhang, Z.-G.; Li, Y.; Yang, C. Ring-Perfluorinated Non-Volatile Additives with a High Dielectric Constant Lead to Highly Efficient and Stable Organic Solar Cells. J. Mater. Chem. C Mater. 2019, 7, 4716–4724. DOI: 10.1039/C9TC00762H.
  • Liu, L.; Kan, Y.; Gao, K.; Wang, J.; Zhao, M.; Chen, H.; Zhao, C.; Jiu, T.; Jen, A. ‐Y.; Li, Y. Graphdiyne Derivative as Multifunctional Solid Additive in Binary Organic Solar Cells with 17.3% Efficiency and High Reproductivity. Adv. Mater. 2020, 32, 1907604. DOI: 10.1002/adma.201907604.
  • Yu, F.; Kuppa, V. K. Enhancement in the Performance of Organic Photovoltaic Devices with Pristine Graphene. Mater. Lett. 2013, 99, 72–75. DOI: 10.1016/j.matlet.2013.02.069.
  • Agbolaghi, S. A Step towards High-Performance Photovoltaics via Three-Component P3HT/PANI-Graft-rGO Nanocomposites. Fuller. Nanotub. Carbon Nanostructures 2019, 27, 650–660. DOI: 10.1080/1536383X.2019.1629422.
  • Yan, L.; Li, Y.; Yang, Y.; Liu, X.; Chen, Y.; Xu, B. P3HT/Dodecylamine Functioned Carbon Microspheres Composite Films for Polymer Solar Cells. Fuller. Nanotub. Carbon Nanostructures 2014, 23, 549–556. DOI: 10.1080/1536383X.2014.885958.
  • Putz, M. V.; Svera, P.; Putz, A.-M.; Cataldo, F. Quantum Particles on Graphenic Systems. Part 2. Bondons by Absorption Raman Spectra. Fuller. Nanotub. Carbon Nanostructures 2018, 26, 330–341. DOI: 10.1080/1536383X.2018.1433162.
  • Kobeleva, E. S.; Nevostruev, D. A.; Krivenko, O. L.; Uvarov, M. N.; Gurova, O. A.; Lobiak, E. V.; Berezin, A. S.; Zinovyev, V. A.; Utkin, D. E.; Degtyarenko, K. M.; Kulik, L. V. Charge Photogeneration in Composites of Fluorinated Carbon Nanotubes and Semiconducting Polymer P3HT. Phys. Status Solidi B 2020, 257, 2000161. DOI: 10.1002/pssb.202000161.
  • Kobeleva, E. S.; Nevostruev, D. A.; Uvarov, M. N.; Utkin, D. E.; Zinoviev, V. A.; Gurova, O. A.; Kazantzev, M. S.; Degtyarenko, K. M.; Kulikova, A. V.; Kulik, L. V. Fluorination of Single-Walled Carbon Nanotubes and Their Application in Organic Photovoltaic Cells as an Electron Acceptor. Russ. Chem. Bull. 2021, 70, 2427–2433. DOI: 10.1007/s11172-021-3363-4.
  • Gurova, O. A.; Arhipov, V. E.; Koroteev, V. O.; Guselnikova, T. Y.; Asanov, I. P.; Sedelnikova, O. V.; Okotrub, A. V.; Purification of Single‐Walled Carbon Nanotubes Using Acid Treatment and Magnetic Separation. Phys. Status Solidi B 2019, 256, 1800742. DOI: 10.1002/pssb.201800742.
  • Miners, S. A.; Rance, G. A.; La Torre, A.; Kenny, S. M.; Khlobystov, A. N. Controlled Oxidative Cutting of Carbon Nanotubes Catalysed by Silver Nanoparticles. J. Mater. Chem. C 2014, 2, 8357–8363. DOI: 10.1039/C4TC01334D.
  • Khabashesku, V. N. Covalent Functionalization of Carbon Nanotubes: Synthesis, Properties and Applications of Fluorinated Derivatives. Russ. Chem. Rev. 2011, 80, 705–725. DOI: 10.1070/RC2011v080n08ABEH004232.
  • Gagne, R. R.; Koval, C. A.; Lisensky, G. C. Ferrocene as an Internal Standard for Electrochemical Measurements. Inorg. Chem. 1980, 19, 2854–2855. DOI: 10.1021/ic50211a080.
  • Juska, G.; Arlauskas, K.; Viliunas, M.; Kocka, J. Extraction Current Transients: New Method of Study of Charge Transport in Microcrystalline Silicon. Phys Rev Lett. 2000, 84, 4946–4949. DOI: 10.1103/physrevlett.84.4946.
  • Michaelson, H. B. The Work Function of the Elements and Its Periodicity. J. Appl. Phys. 1977, 48, 4729–4733. DOI: 10.1063/1.323539.
  • Tremel, K.; Ludwigs, S. Morphology of P3HT in Thin Films in Relation to Optical and Electrical Properties. P3HT Revisited – From Molecular Scale to Solar Cell Devices; Springer: Heidelberg, 2014, 39–82. DOI: 10.1007/12_2014_288.
  • Liu, C.; Cheng, H.-M. Controlled Growth of Semiconducting and Metallic Single-Wall Carbon Nanotubes. J. Am. Chem. Soc. 2016, 138, 6690–6698. DOI: 10.1021/jacs.6b00838.
  • Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Optical Properties of Single-Wall Carbon Nanotubes. Synth. Met. 1999, 103, 2555–2558. DOI: 10.1016/S0379-6779(98)00278-1.
  • Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Trigonal Warping Effect of Carbon Nanotubes. Phys. Rev. B 2000, 61, 2981–2990. DOI: 10.1103/PhysRevB.61.2981.
  • He, Y.; Zhao, G.; Peng, B.; Li, Y. High-Yield Synthesis and Electrochemical and Photovoltaic Properties of Indene-C70 Bisadduct. Adv. Funct. Mater. 2010, 20, 3383–3389. DOI: 10.1002/adfm.201001122.
  • Xu, B.; Saianand, G.; Roy, V. A. L.; Qiao, Q.; Reza, K. M.; Kang, S. W. Employing PCBTDPP as an Efficient Donor Polymer for High Performance Ternary Polymer Solar Cells. Polymers 2019, 11, 1423. DOI: 10.3390/polym11091423.
  • Yi, H.; Al-Faifi, S.; Iraqi, A.; Watters, D. C.; Kingsley, J.; Lidzey, D. G. Carbazole and Thienyl Benzo[1,2,5]Thiadiazole Based Polymers with Improved Open Circuit Voltages and Processability for Application in Solar Cells. J. Mater. Chem. 2011, 21, 13649. DOI: 10.1039/c1jm12089a.
  • Cowan, S. R.; Schulz, P.; Giordano, A. J.; Garcia, A.; MacLeod, B. A.; Marder, S. R.; Kahn, A.; Ginley, D. S.; Ratcliff, E. L.; Olson, D. C. Chemically Controlled Reversible and Irreversible Extraction Barriers Via Stable Interface Modification of Zinc Oxide Electron Collection Layer in Polycarbazole-Based Organic Solar Cells. Adv. Funct. Mater. 2014, 24, 4671–4680. DOI: 10.1002/adfm.201400158.
  • Park, S. H.; Roy, A.; Beaupré, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. Bulk Heterojunction Solar Cells with Internal Quantum Efficiency Approaching 100%. Nat. Photonics 2009, 3, 297–302. DOI: 10.1038/nphoton.2009.69.
  • Blackburn, J. L. Semiconducting Single-Walled Carbon Nanotubes in Solar Energy Harvesting. ACS Energy Lett. 2017, 2, 1598–1613. DOI: 10.1021/acsenergylett.7b00228.
  • Wadsworth, A.; Hamid, Z.; Kosco, J.; Gasparini, N.; McCulloch, I. The Bulk Heterojunction in Organic Photovoltaic, Photodetector, and Photocatalytic Applications. Adv. Mater. 2020, 32, 2001763. DOI: 10.1002/adma.202001763.
  • Bounioux, C.; Katz, E. A.; Yerushalmi- Rozen, R. Conjugated Polymers - Carbon Nanotubes-Based Functional Materials for Organic Photovoltaics: A Critical Review. Polym. Adv. Technol. 2012, 23, 1129–1140. DOI: 10.1002/pat.3054.
  • Ratier, B.; Nunzi, J.-M.; Aldissi, M.; Kraft, T. M.; Buncel, E. Organic Solar Cell Materials and Active Layer Designs-Improvements with Carbon Nanotubes: A Review. Polym. Int. 2012, 61, 342–354. DOI: 10.1002/pi.3233.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.