109
Views
0
CrossRef citations to date
0
Altmetric
Articles

Intelligent interpretation of the astronomical UIE bands: the spectra similarity

, , &
Pages 489-504 | Received 20 Dec 2022, Accepted 16 Feb 2023, Published online: 14 Mar 2023

References

  • Russell, R. W.; Soifer, B. T.; Willner, S. P. The 4 to 8 Micron Spectrum of NGC 7027. ApJ 1977, 217, L149–L153. DOI: 10.1086/182559
  • Barlow, M. J. Observation of Dust in PN. In IAU Symp. 103: Planetary Nebulae; Flower, D. R., Ed.; D.Reidel Publisdhing Company: Holand, 1983; p 105.
  • Cohen, M.; Allamandola, L.; Tielens, A. G. G. M.; Bregman, J.; Simpson, J. P.; https://adsabs.harvard.edu/full/1986ApJ…302.737C Witteborn, F. C. The Infrared Emission Bands. I - Correlation Studies and the Dependence on C/O Ratio. ApJ 1986, 302, 737–749.
  • Knacke, R. F. Carbonaceous Compounds in Interstellar Dust. Nature 1977, 269, 132. DOI: 10.1038/269132a0.
  • Duley, W. W.; Williams, D. A. Are There Organic Grains in the Interstellar Medium? Nature 1979, 277, 40–41. DOI: 10.1038/277040a0.
  • Salama, F. PAHs in Astronomy - A Review. In Organic Matter in Space; Kwok, S.; Sanford, S. Eds; Cambridge University Press, UK; 2008; pp. 357–366.
  • Leger, A.; Puget, J. L. Identification of the Unidentified Infrared Emission Features of Interstellar Dust. A&A 1984, 137, L5–L8.
  • Jourdain de Muizon, M.; Geballe, T. R.; D’Hendecourt, L. B.; Baas, F. New Emission Features in the Infrared Spectra of Two IRAS Sources. ApJ 1986, 306, L105–L108. DOI: 10.1086/184715.
  • Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R. Interstellar Polycyclic Aromatic Hydrocarbons: The Infrared Emission Bands, the Excitation/Emission Mechanism, and the Astrophysical Implications. ApJS 1989, 71, 733–775. DOI: 10.1086/191396.
  • Rosenberg, M. J. F.; Berné, O.; Boersma, C.; Allamandola, L. J.; Tielens, A. G. G. M. Coupled Blind Signal Separation and Spectroscopic Database Fitting of the Mid Infrared PAH Features. A&A 2011, 532, A128. DOI: 10.1051/0004-6361/201016340.
  • Rosenberg, M. J. F.; Berné, O.; Boersma, C. Random Mixtures of Polycyclic Aromatic Hydrocarbon Spectra Match Interstellar Infrared Emission. A&A 2014, 566, L4. DOI: 10.1051/0004-6361/201423953.
  • Zhang, Y.; Kwok, S. On the Viability of the PAH Model as an Explanation of the Unidentified Infrared Emission Features. ApJ 2015, 798, 37. DOI: 10.1088/0004-637X/798/1/37.
  • Hrivnak, B. J.; Geballe, T. R.; Kwok, S. A Study of the 3.3 and 3.4 μm Emission Features in Proto-Planetary Nebulae. ApJ 2007, 662, 1059–1066. DOI: 10.1086/518109.
  • Kwok, S.; Zhang, Y. Undefined Infrared Emission Bands: PAHs or MAONs? ApJ 2013, 771, 5. DOI: 10.1088/0004-637X/771/1/5
  • Duley, W. W. Infrared Spectra of Interstellar Carbon Solids. In Astronomical Infrared Spectroscopy: Future Observational Directions; Kwok, S., Ed; Astronomical Society of the pacific. ASP Conference Series, San Francisco; 1993; p. 241.
  • Hu, A.; Duley, W. W. Spectra of Carbon Nanoparticles: Laboratory Simulation of the Aromatic CH Emission Feature at 3.29 μm. ApJ 2008, 677, L153. https://iopscience.iop.org/article/10.1086/587983.
  • Sakata, A.; Wada, S.; Onaka, T.; Tokunaga, A. T. Quenched Carbonaceous Composite. III. Comparison to the 3.29 Micron Interstellar Emission Feature. ApJ 1990, 353, 543–548. DOI: 10.1086/168642
  • Kwok, S.; Volk, K.; Bernath, P. On the Origin of Infrared Plateau Features in Proto-Planetary Nebulae. ApJ 2001, 554, L87. https://iopscience.iop.org/article/10.1086/320913.
  • Papoular, R.; Conrad, J.; Giuliano, M.; Kister, J.; Mille, G. A Coal Model for the Carriers of the Unidentified IR Bands. ADS Bibcode 1989, 217, 204–208.
  • Cataldo, F.; Keheyan, Y.; Heymann, D. A New Model for the Interpretation of the Unidentified Infrared Bands (UIBS) of the Diffuse Interstellar Medium and of the Protoplanetary Nebulae. Int. J. Astrobiol. 2002, 1, 79–86. DOI: 10.1017/S1473550402001131.
  • Cataldo, F.; García-Hernández, D. A.; Manchado, A. Far- and Mid-Infrared Spectroscopy of Complex Organic Matter of Astrochemical Interest: coal, Heavy Petroleum Fractions and Asphaltenes. MNRAS 2013, 429, 3025–3039. DOI: 10.1093/mnras/sts558.
  • Kwok, S.; Zhang, Y. Mixed Aromatic-Aliphatic Organic Nanoparticles as Carriers of Unidentified Infrared Emission Features. Nature 2011, 479, 80–83. DOI: 10.1038/nature10542.
  • Cataldo, F.; García-Hernández, D. A.; Manchado, A. FT-IR Spectroscopy of Carbonized Acenes: A Possible Key for the UIBs/AIBs Origins. FNCN 2018, 26, 820–826. DOI: 10.1080/1536383X.2018.1502178.
  • Halasinski, T. M.; Ruiterkamp, R.; Salama, F.; Foing, B. H.; Ehrenfreund, P. Prototype of Larger Fullerenes. Laboratory Spectroscopy and Astronomical Relevance. FNCN 2011, 19, 398–409. DOI: 10.1080/15363831003721807.
  • Sadjadi, S. A.; Kwok, S.; Cataldo, F.; García-Hernández, D. A.; Manchado, A. A Theoretical Investigation of the Possible Detection of C24 in Space. FNCN 2020, 28, 637–641. DOI: 10.1080/1536383X.2020.1731735.
  • Cataldo, F. Fullerane, the Hydrogenated C60 Fullerene: Properties and Astrochemical Considerations. FNCN 2003, 11, 295–316. DOI: 10.1081/FST-120025852.
  • Díaz-Luis, J. J.; García-Hernández, D. A.; Manchado, A.; Cataldo, F. A Search for Hydrogenated Fullerenes in Fullerene-Containing Planetary Nebulae. J. Phys. Conf. Ser. 2016, 728, 052005. DOI: 10.1088/1742-6596/728/5/052005
  • Zhang, Y.; Sadjadi, S. A.; Hsia, C.-H.; Kwok, S. Search for Hydrogenated C60 (Fulleranes) in Circumstellar Envelopes. ApJ 2017, 845, 76. DOI: 10.3847/1538-4357/aa71ac
  • Sadjadi, S. A.; Parker, Q. A. It Remains a Cage: ionization Tolerance of C60 Fullerene in Planetary Nebulae. FNCN 2021, 29, 620–625. DOI: 10.1080/1536383X.2021.1876677.
  • Sadjadi, S. A.; Parker, Q. A.; Hsia, C.-H.; Zhang, Y. A Theoretical Study of Infrared Spectra of Highly Positively Charged C60 Fullerenes and Their Relevance to Observed UIE Features. ApJ 2022, 934, 75. DOI: 10.3847/1538-4357/ac75d5
  • Barzaga, R.; García-Hernández, D. A.; Díaz-Tendero, S.; Sadjadi, S. A.; Manchado, A.; Alcami, M. On the Presence of Metallofullerenes in Fullerene-Rich Circumstellar Envelopes. ApJ 2022, 942, 5. DOI: 10.3847/1538-4357/aca529
  • Merlinger, M.; Cleaves, H. J. Exploring Astrobiology Using in Silico Molecular Structure Generation. Phil. Trans. R. Soc. A 2017, 375, 0344. DOI: 10.1098/rsta.2016.0344.
  • Griffith, P. G.; Shao, L. Self-Weighted Correlation Coefficients and Their Application to Measure Spectral Similarity. Appl. Spectrosc. 2009, 63, 916–919. DOI: 10.1366/000370209788964575
  • McCulloch, W. S.; Pitts, W. A. logical Calculus of the Ideas Immanent in Nervous Activity. Bull. Math. Biophys. 1943, 5, 115–133.
  • Rosenbaltt, F. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychol. Rev. 1958, 65, 386–408. DOI: 10.1037/h0042519.
  • Hopefield, J. J. Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proc. Natl. Acad. Sci. 1982, 79, 2554–2558. DOI: 10.1073/pnas.79.8.2554.
  • Munk, M. E.; Christie, B. D. The Characterization of Structure by Computer. Anal. Chim. Acta 1989, 216, 57–68. DOI: 10.1016/S0003-2670(00)82004-8.
  • Munk, M. E.; Madison, M. S.; Robb, E. W. Neural Network Models for Infrared Spectrum Interpretation. Microchim. Acta 1991, 104, 505–514. DOI: 10.1007/BF01245535.
  • Gasteiger, J.; Simon, X.; Li, Novič, M.; Zupan, J. Neural Nets for Mass and Vibrational Spectra. J. Mol. Str. 1993, 292, 141–159. DOI: 10.1016/0022-2860(93)80097-F.
  • Weigel, U. M.; Herges, R. Simulation of Infrared Spectra Using Artificial Neural Networks Based on Semiempirical and Empirical Data. Anal. Chim. Acta 1996, 331, 63–74. DOI: 10.1016/0003-2670(96)00203-6.
  • Schuur, J. H.; Selzer, P.; Gasteiger, J. The Coding of the Three-Dimensional Structure of Molecules by Molecular Transforms and Its Application to Structure-Spectra Correlations and Studies of Biological Activity. J. Chem. Inf. Comput. Sci. 1996, 36, 334–344. DOI: 10.1021/ci950164c.
  • Gasteiger, J.; Sadowski, J.; Schuur, J.; Selzer, P.; Steinhauer, L.; Steinhauer, V. Chemical Information in 3D Space. J. Chem. Inf. Comput. Sci. 1996, 36, 1030–1037. DOI: 10.1021/ci960343+.
  • Baumann, K.; Clerc, J. T. Computer-Assisted IR Spectra Prediction Linked Similarity Searches for Structures and Spectra. Anal. Chim. Act 1997, 348, 327–343. DOI: 10.1016/S0003-2670(97)00238-9.
  • Piottukh-Peletskii, V. N.; Derendyaev, B. G.; Sharapova, O. N. Evaluation of the Relationship between Spectral and Structural Similarity in IR Spectroscopy. J. Struct. Chem. 2000, 41, 309–317. DOI: 10.1007/BF02741597.
  • Piottukh-Peletskii, V. N.; Chmutina, K. S.; Korolevich, M. V.; Zhbankov, R. G.; B. G.; Derendyaev,.; B.; G. Structural Similarity and IR Spectrum Modeling Using the Spectrum–Fragment Composition Database. J. Struct. Chem. 2002, 43, 401–411. DOI: 10.1023/A:1020376713698.
  • Varmuza, K.; Karlovits, M.; Demuth, W. Spectral Similarity versus Structural Similarity: infrared Spectroscopy. Anal. Chim. Act 2003, 490, 313–324. DOI: 10.1016/S0003-2670(03)00668-8.
  • Spartan’16. Wavefunction, Inc.: Irvine, CA USA, 2016.
  • Alt, H.; Godau, M. Computing the Ferchet Distance between Two Polygonal Curves. Int. J. Comp. Geo. Appl. 1995, 5, 75–91. DOI: 10.1142/S0218195995000052.
  • Lin, C. Y.; George, M. W.; Gill, P. M. W. EDF2: A Density Functional for Predicting Molecular Vibrational Frequencies. Aust. J. Chem. 2004, 57, 365–370. DOI: 10.1071/CH03263.
  • Black, J. H.; Van Dishoeck, E. F. Fluorescent Excitation of Interstellar H2. ApJ 1987, 322, 412–449.
  • Kramida, A.; Ralchenko, Y.; Reader, J. NIST ASD Team 2022. NIST Atomic Spectra Database (ver. 5.10), [Online]. 2023. National Institute of Standards and Technology, Gaithersburg, MD. DOI: 10.18434/T4W30F. Available: https://physics.nist.gov/asd.
  • Cami, J.; Bernard-Salas, J.; Peeters, E.; Malek, S. E. Detection of C60 and C70 in a Young Planetary Nebula. Science 2010, 329, 1180–1182.
  • Postberg, F.; Khawaja, N.; Abel, B.; Choblet, G.; Glein, Christopher, R.; et al. Macromolecular Organic Compounds from the Depths of Enceladus. Nature 2018, 558, 564–568. DOI: 10.1038/s41586-018-0246-4.
  • Bezard, B.; Drossart, P.; Encrenaz, T.; Feuchtgruber, H. Benzene on the Giant Planets. Icarus 2001, 154, 492–500.
  • Kwok, S. Organics in the Solar System. Res. Astron. Astrophys. 2019, 19, 049. DOI: 10.1088/1674-4527/19/4/49.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.