106
Views
0
CrossRef citations to date
0
Altmetric
Articles

Study of ultra-high-performance concrete containing multivariate supplementary cementitious materials: experiments and modeling

, , , , &
Pages 549-558 | Received 14 Feb 2023, Accepted 01 Mar 2023, Published online: 14 Mar 2023

References

  • Zhan, P.; Xu, J.; Wang, J.; Jiang, C. Multi-Scale Study on Synergistic Effect of Cement Replacement by Metakaolin and Typical Supplementary Cementitious Materials on Properties of Ultra-High Performance Concrete. Constr. Build. Mater. 2021, 307, 125082. DOI: 10.1016/j.conbuildmat.2021.125082.
  • Zhang, X.; Wei, Y.; Zuo, J.; Luo, Y.; Wang, B.; Yao, W. Evolution of Hydration Process of Cement-Based Material Containing High Volume of Dolomite Powder. Fuller. Nanotub. Carbon Nanostruct. 2021, 29, 343–351. DOI: 10.1080/1536383X.2020.1842739.
  • Kan, D.; Liu, G.; Chen, Z.; Cao, S.; Yu, Q. Mechanical Properties and Microcosmic Mechanism of Multi-Walled Carbon Nanotubes Reinforced Ultra-High Strength Concrete. Fuller. Nanotub. Carbon Nanostruct. 2023, 31, 157–167. DOI: 10.1080/1536383X.2022.2130899.
  • Yuan, X.; Liao, G. Comprehensive Study on the Mechanical Property and Fracture Behavior of Ultra-High Strength Concrete. Fuller. Nanotub. Carbon Nanostruct. 2023, 31, 51–60. DOI: 10.1080/1536383X.2022.2110082.
  • Zhan, P.; Zhang, X.; He, Z.; Shi, J.; Gencel, O.; Yen, N.; Wang, G. Strength, Microstructure and Nanomechanical Properties of Recycled Aggregate Concrete Containing Waste Glass Powder and Steel Slag Powder. J. Clean. Prod. 2022, 341, 130892. DOI: 10.1016/j.jclepro.2022.130892.
  • Zhan, P.; Xu, J.; Wang, J.; Zuo, J.; He, Z. A Review of Recycled Aggregate Concrete Modified by Nanosilica and Graphene Oxide: Materials, Performances and Mechanism. J. Clean. Prod. 2022, 375, 134116. DOI: 10.1016/j.jclepro.2022.134116.
  • Güneyisi, E.; Gesoğlu, M.; Akoi, A. O. M.; Mermerdaş, K. Combined Effect of Steel Fiber and Metakaolin Incorporation on Mechanical Properties of Concrete. Compos. B 2014, 56, 83–91. DOI: 10.1016/j.compositesb.2013.08.002.
  • Oriol, M.; Pera, J. Pozzolanic Activity of Metakaolin under Microwave Treatment. Cem. Concr. Res. 1995, 25, 265–270. DOI: 10.1016/0008-8846(95)00007-0.
  • Zhan, P.; He, Z.; Ma, Z.; Liang, C.; Zhang, X.; Abreham, A.; Shi, J. Utilization of Nano-Metakaolin in Concrete: A Review. J. Build. Eng. 2020, 30, 101259. DOI: 10.1016/j.jobe.2020.101259.
  • Shvarzman, A.; Kovler, K.; Grader, G. S.; Shter, G. The Effect of Dehydroxylation/Amorphization Degree on Pozzolanic Activity of Kaolinite. Cem. Concr. Res. 2003, 33, 405–416. DOI: 10.1016/S0008-8846(02)00975-4.
  • Frı́as, M.; Cabrera, J. Pore Size Distribution and Degree of Hydration of Metakaolin-Cement Pastes. Cem. Concr. Res. 2000, 30, 561–569. DOI: 10.1016/S0008-8846(00)00203-9.
  • Brooks, J. J.; Johari, M. A. M. Effect of Metakaolin on Creep and Shrinkage of Concrete. Cem. Concr. Compos. 2001, 23, 495–502. DOI: 10.1016/S0958-9465(00)00095-0.
  • Poon, C. S.; Kou, S. C.; Lam, L. Compressive Strength, Chloride Diffusivity and Pore Structure of High Performance Metakaolin and Silica Fume Concrete. Constr. Build. Mater. 2006, 20, 858–865. DOI: 10.1016/j.conbuildmat.2005.07.001.
  • Saridemir, M. Prediction of Compressive Strength of Concretes Containing Metakaolin and Silica Fume by Artificial Neural Networks. Adv. Eng. Softw. 2009, 40, 350–355.
  • T Y S, P. J. Effect of Graphene Oxide on the Microstructure and Hydration Characteristics of Ultrafine Slag Cement Composites. Fuller. Nanotub. Carbon Nanostruct. 2022, 30, 1054–1065.
  • Asbridge, A. H.; Chadbourn, G. A.; Page, C. L. Effects of Metakaolin and the Interfacial Transition Zone on the Diffusion of Chloride Ions through Cement Mortars. Cem. Concr. Res. 2001, 31, 1567–1572. DOI: 10.1016/S0008-8846(01)00598-1.
  • Roy, D. M.; Arjunan, P.; Silsbee, M. R. Effect of Silica Fume, Metakaolin, and Low-Calcium Fly Ash on Chemical Resistance of Concrete. Cem. Concr. Res. 2001, 31, 1809–1813. DOI: 10.1016/S0008-8846(01)00548-8.
  • Zhan, P.; Xu, J.; Wang, J.; Zuo, J.; He, Z. Structural Supercapacitor Electrolytes Based on Cementitious Composites Containing Recycled Steel Slag and Waste Glass Powders. Cem. Concr. Compos. 2023, 137, 104924. DOI: 10.1016/j.cemconcomp.2022.104924.
  • Zhan, P.; He, Z. Application of Shrinkage Reducing Admixture in Concrete: A Review. Constr. Build. Mater. 2019, 201, 676–690. DOI: 10.1016/j.conbuildmat.2018.12.209.
  • Wei, Y.; Miao, Z.; Jia, Z.; Wang, Y.; Zhou, Y.; Zhang, H.; Wei, J. Synergy of Reduced Graphene Oxide and Metal Oxides Improves the Power Factor of Thermoelectric Cement Matrix Composites. Fuller. Nanotub. Carbon Nanostruct. 2022, 30, 801–813. DOI: 10.1080/1536383X.2021.2024167.
  • Fakharpour, M.; Karimi, R. Electromagnetic Wave Absorption Properties of MWCNTs-COOH/Cement Composites with Different Shapes of Chiral, Armchair and Zigzag. Fuller. Nanotub. Carbon Nanostruct. 2021, 29, 386–393. DOI: 10.1080/1536383X.2020.1849148.
  • ACI 318-11. Building Code Requirements for Structural Concrete and Commentary, PCA Notes on ACI 318-11: With Design Applications. Farmington Hills (Mich): ACI International; 2011.
  • CSA. A23.3-04. Design of Concrete Structures. Canadian Standard Association: Mississauga; 2004.
  • Eurocode 2-04. Design of Concrete Structures: Part 1-1: general Rules and Rules for Buildings. European Committee for Standardization (CEN), British Standards Institution; 2004.
  • JSCE-07. Standard Specification for Concrete Structure. JSCE No. 15. Japan Society of Civil Engineers: Tokyo, Japan; 2007.
  • JCI-08. Guidelines for Control of Cracking of Mass Concrete 2008. Japan Concrete Institute: Tokyo, Japan; 2008.
  • NZS 3101:2006. Concrete Structures Standard. The Design of Concrete Structures. New Zealand Standards Association: Wellington, New Zealand; 2006
  • Shariq, M.; Prasad, J.; Abbas, H. Effect of GGBFS on Age Dependent Static Modulus of Elasticity of Concrete[J]. Constr. Build. Mater. 2013, 41, 411–418. DOI: 10.1016/j.conbuildmat.2012.12.035.
  • Shariq, M.; Prasad, J.; Masood, A. Effect of GGBFS on Time Dependent Compressive Strength of Concrete[J]. Constr. Build. Mater. 2010, 24, 1469–1478. DOI: 10.1016/j.conbuildmat.2010.01.007.
  • Bažant, Z. P.; Baweja, S. Justification and Refinements of Model B3 for Concrete Creep and Shrinkage 1. Statistics and Sensitivity. Mater. Struct. 1995, 28, 415–430. DOI: 10.1007/BF02473078.
  • Bazant, Z. P.; Baweja, S. Justification and Refinements of Model B3 for Concrete Creep and Shrinkage 2. Updat. Theor. Basis Mater. Struct. 1995, 28, 488–495. DOI: 10.1007/BF02473171.
  • Bažant, Z. P.; Baweja, S. Short Form of Creep and Shrinkage Prediction Model B3 for Structures of Medium Sensitivity. Mater. Struct. 1996, 29, 587–593.
  • Gardner, N. J.; Lockman, M. J. Design Provisions for Drying Shrinkage and Creep of Normal-Strength Concrete. Mater. J. 2001, 98, 159–167.
  • CEB-FIP Model Code 1990, Design Code, 1993. Comite Euro-International Du Beton: London; 1994.
  • Gu, C.; Wang, Y.; Gao, F.; Yang, Y.; Ni, T.; Liu, J.; Lou, X.; Chen, J. Early Age Tensile Creep of High Performance Concrete Containing Mineral Admixtures: Experiments and Modeling. Constr. Build. Mater. 2019, 197, 766–777. DOI: 10.1016/j.conbuildmat.2018.11.218.
  • She, A.; Ma, K.; Yao, W.; Zuo, J.; Liao, G. Hydration Kinetics of Cementitious Materials Based on Low-Field NMR and Isothermal Calorimetry. Fuller. Nanotub. Carbon Nanostruct. 2022, 30, 607–618. DOI: 10.1080/1536383X.2021.1986485.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.