167
Views
1
CrossRef citations to date
0
Altmetric
Articles

The synthesis of fluorescent carbon quantum dots for tartrazine detection in food: a novel one-step microwave heating approach

&
Pages 743-751 | Received 07 Mar 2023, Accepted 18 Apr 2023, Published online: 04 May 2023

References

  • Chaudhry, Q.; Scotter, M.; Blackburn, J.; Ross, B.; Boxall, A.; Castle, L.; Aitken, R.; Watkins, R. Applications and Implications of Nanotechnologies for the Food Sector. Food Addit. Contam. A: Chem. Anal. Control Expo Risk Assess. 2008, 25, 241–258. DOI: 10.1080/02652030701744538.
  • Wu, L.; Zhang, C.; Long, Y.; Chen, Q.; Zhang, W.; Liu, G. Food Additives: From Functions to Analytical Methods. Crit. Rev. Food Sci. Nutr. 2022, 62, 8497–8517. DOI: 10.1080/10408398.2021.1929823.
  • Saltmarsh, M. Recent Trends in the Use of Food Additives in the United Kingdom. J. Sci. Food Agric. 2015, 95, 649–652. DOI: 10.1002/jsfa.6715.
  • Gebhardt, B.; Sperl, R.; Carle, R.; Müller-Maatsch, J. Assessing the Sustainability of Natural and Artificial Food Colorants. J. Clean. Prod. 2020, 260, 120884. DOI: 10.1016/j.jclepro.2020.120884.
  • Novais, C.; Molina, A. K.; Abreu, R. M.; Santo-Buelga, C.; Ferreira, I. C.; Pereira, C.; Barros, L. Natural Food Colorants and Preservatives: A Review, a Demand, and a Challenge. J. Agric. Food Chem. 2022, 70, 2789–2805. DOI: 10.1021/acs.jafc.1c07533.
  • Zang, E.; Jiang, L.; Cui, H.; Li, X.; Yan, Y.; Liu, Q.; Chen, Z.; Li, M. Only Plant-Based Food Additives: An Overview on Application, Safety, and Key Challenges in the Food Industry. Food Rev. Int. 2022, 14, 1–32. DOI: 10.1080/87559129.2022.2062764.
  • Ntrallou, K.; Gika, H.; Tsochatzis, E. Analytical and Sample Preparation Techniques for the Determination of Food Colorants in Food Matrices. Foods 2020, 9, 58. DOI: 10.3390/foods9010058.
  • Leulescu, M.; Rotaru, A.; Pălărie, I.; Moanţă, A.; Cioateră, N.; Popescu, M.; Morîntale, E.; Bubulică, M. V.; Florian, G.; Hărăbor, A.; Rotaru, P. Tartrazine: Physical, Thermal and Biophysical Properties of the Most Widely Employed Synthetic Yellow Food-Colouring Azo Dye. J. Therm. Anal. Calorim. 2018, 134, 209–231. DOI: 10.1007/s10973-018-7663-3.
  • Rovina, K.; Siddiquee, S.; Shaarani, S. M. A Review of Extraction and Analytical Methods for the Determination of Tartrazine (E102) in Foodstuffs. Crit. Rev. Anal. Chem. 2017, 47, 309–324. DOI: 10.1080/10408347.2017.1287558.
  • Sun, L.; Xin, F.; Alper, H. S. Bio-Synthesis of Food Additives and Colorants—A Growing Trend in Future Food. Biotechnol. Adv. 2021, 47, 107694. DOI: 10.1016/j.biotechadv.2020.107694.
  • Silva, M. M.; Reboredo, F. H.; Lidon, F. C. Food Colour Additives: A Synoptical Overview on Their Chemical Properties, Applications in Food Products, and Health Side Effects. Foods 2022, 11, 379. DOI: 10.3390/foods11030379.
  • Lin, L.; Zheng, Q.; Chen, Q.; Fang, M.; Lai, Q.; He, X.; Qin, J.; Lin, Z. J.; Lin, R. Preparation of Fluorescent Organic Nanoparticles via Self-Polymerization for Tartrazine Detection in Food Samples. New J. Chem. 2022, 46, 4756–4761. DOI: 10.1039/D1NJ05176H.
  • Mathiyalagan, S.; Mandal, B. K.; Ling, Y. C. Determination of Synthetic and Natural Colorants in Selected Green Colored Foodstuffs through Reverse Phase-High Performance Liquid Chromatography. Food Chem. 2019, 278, 381–387. DOI: 10.1016/j.foodchem.2018.11.077.
  • Pauk, V.; Krejčí, M.; Lemr, K. Unified Chromatography–Mass Spectrometry as a Versatile Tool for Determination of Food Dyes. Anal. Chim. Acta 2021, 1157, 338401. DOI: 10.1016/j.aca.2021.338401.
  • Manjunatha, J. G. A Novel Voltammetric Method for the Enhanced Detection of the Food Additive Tartrazine Using an Electrochemical Sensor. Heliyon 2018, 4, e00986. DOI: 10.1016/j.heliyon.2018.e00986.
  • Shao, Y.; Zhu, Y.; Zheng, R.; Wang, P.; Zhao, Z.; An, J. Highly Sensitive and Selective Surface Molecularly Imprinted Polymer Electrochemical Sensor Prepared by Au and MXene Modified Glassy Carbon Electrode for Efficient Detection of Tetrabromobisphenol a in Water. Adv. Compos. Hybrid Mater. 2022, 5, 3104–3116. DOI: 10.21203/rs.3.rs-1944259/v1.
  • Wu, M.; Jing, T.; Tian, J.; Qi, H.; Shi, D.; Zhao, C.; Chen, T.; Zhao, Z.; Zhang, P.; Guo, Z. Synergistic Effect of Silver Plasmon Resonance and p-n Heterojunction Enhanced Photoelectrochemical Aptasensing Platform for Detecting Chloramphenicol. Adv. Compos. Hybrid Mater. 2022, 5, 2247–2259. DOI: 10.1007/s42114-021-00377-z.
  • Kim, E. B.; Imran, M.; Umar, A.; Akhtar, M. S.; Ameen, S. Indandione Oligomer@ Graphene Oxide Functionalized Nanocomposites for Enhanced and Selective Detection of Trace Cr2+ and Cu2+ Ions. Adv. Compos. Hybrid Mater. 2022, 5, 1582–1594. DOI: 10.1007/s42114-022-00428-z.
  • Ma, Y.; Zhang, Y.; Liu, M.; Han, T.; Wang, Y.; Wang, X. Improving the Performance of Quantum Dot Sensitized Solar Cells by Employing Zn Doped CuInS2 Quantum Dots. Adv. Compos. Hybrid Mater. 2022, 5, 402–409. DOI: 10.1007/s42114-021-00324-y.
  • Niu, M.; Sui, K.; Wu, X.; Cao, D.; Liu, C. GaAs Quantum Dot/TiO2 Heterojunction for Visible-Light Photocatalytic Hydrogen Evolution: Promotion of Oxygen Vacancy. Adv. Compos. Hybrid Mater. 2022, 5, 450–460. DOI: 10.1007/s42114-021-00296-z.
  • Kumari, M.; Chaudhary, G. R.; Chaudhary, S.; Umar, A. Rapid Analysis of Trace Sulphite Ion Using Fluorescent Carbon Dots Produced from Single Use Plastic Cups. Eng. Sci. 2021, 17, 101–112. DOI: 10.30919/es8d556.
  • Vijeata, A.; Chaudhary, G. R.; Umar, A.; Chaudhary, S. Distinctive Solvatochromic Response of Fluorescent Carbon Dots Derived from Different Components of Aegle Marmelos Plant. Eng. Sci. 2021, 15, 197–209. DOI: 10.30919/es8e512.
  • Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. DOI: 10.1021/ja040082h.
  • Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H.; et al. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757. DOI: 10.1021/ja062677d.
  • Wang, J.; Zheng, J.; Yang, Y.; Liu, X.; Qiu, J.; Tian, Y. Tunable Full-Color Solid-State Fluorescent Carbon Dots for Light Emitting Diodes. Carbon 2022, 190, 22–31. DOI: 10.1016/j.carbon.2022.01.001.
  • Zhou, Y.; Zahran, E. M.; Quiroga, B. A.; Perez, J.; Mintz, K. J.; Peng, Z.; Liyanage, P. Y.; Pandey, R. R.; Chusuei, C. C.; Leblanc, R. M. Size-Dependent Photocatalytic Activity of Carbon Dots with Surface-State Determined Photoluminescence. Appl. Catal. B 2019, 248, 157–166. DOI: 10.1016/j.apcatb.2019.02.019.
  • Puvvada, N.; Kumar, B. P.; Konar, S.; Kalita, H.; Mandal, M.; Pathak, A. Synthesis of Biocompatible Multicolor Luminescent Carbon Dots for Bioimaging Applications. Sci. Technol. Adv. Mater. 2012, 13, 045008. DOI: 10.1088/1468-6996/13/4/045008.
  • Han, Y.; Yang, W.; Luo, X.; He, X.; Zhao, H.; Tang, W.; Yue, T.; Li, Z. Carbon Dots Based Ratiometric Fluorescent Sensing Platform for Food Safety. Crit. Rev. Food Sci. Nutr. 2022, 62, 244–260. DOI: 10.1080/10408398.2020.1814197.
  • Dou, Q.; Fang, X.; Jiang, S.; Chee, P. L.; Lee, T. C.; Loh, X. J. Multi-Functional Fluorescent Carbon Dots with Antibacterial and Gene Delivery Properties. RSC Adv. 2015, 5, 46817–46822. DOI: 10.1039/C5RA07968C.
  • Zhang, Z.; Liu, M.; Ibrahim, M. M.; Wu, H.; Wu, Y.; Li, Y.; Mersal, G. A. M.; El Azab, I. H.; El-Bahy, S. M.; Huang, M.; et al. Flexible Polystyrene/Graphene Composites with Epsilon-near-Zero Properties. Adv. Compos. Hybrid Mater. 2022, 5, 1054–1066. DOI: 10.1007/s42114-022-00486-3.
  • Fan, G.; Wang, Z.; Sun, K.; Liu, Y.; Fan, R. Doped Ceramics of Indium Oxides for Negative Permittivity Materials in MHz-kHz Frequency Regions. J. Mater. Sci. Technol. 2021, 61, 125–131. DOI: 10.1016/j.jmst.2020.06.013.
  • Xie, P.; Shi, Z.; Feng, M.; Sun, K.; Liu, Y.; Yan, K.; Liu, C.; Moussa, T. A. A.; Huang, M.; Meng, S.; et al. Recent Advances in Radio-Frequency Negative Dielectric Metamaterials by Designing Heterogeneous Composites. Adv. Compos. Hybrid Mater. 2022, 5, 679–695. DOI: 10.1007/s42114-022-00479-2.
  • Liu, M.; Wu, H.; Wu, Y.; Xie, P.; Pashameah, R. A.; Abo-Dief, H. M.; El-Bahy, S. M.; Wei, Y.; Li, G.; Li, W.; et al. The Weakly Negative Permittivity with Low-Frequency-Dispersion Behavior in Percolative Carbon Nanotubes/Epoxy Nanocomposites at Radio-Frequency Range. Adv. Compos. Hybrid Mater. 2022, 5, 2021–2030. DOI: 10.1007/s42114-022-00541-z.
  • Uriarte, D.; Domini, C.; Garrido, M. New Carbon Dots Based on Glycerol and Urea and Its Application in the Determination of Tetracycline in Urine Samples. Talanta 2019, 201, 143–148. DOI: 10.1016/j.talanta.2019.04.001.
  • Zhao, Z.; Guo, Y.; Zhang, T.; Ma, J.; Li, H.; Zhou, J.; Wang, Z.; Sun, R. Preparation of Carbon Dots from Waste Cellulose Diacetate as a Sensor for Tetracycline Detection and Fluorescence Ink. Int. J. Biol. Macromol. 2020, 164, 4289–4298. DOI: 10.1016/j.ijbiomac.2020.08.243.
  • Ni, J.; Huang, X.; Bai, Y.; Zhao, B.; Han, Y.; Han, S.; Xu, T.; Si, C.; Zhang, C. Resistance to Aggregation-Caused Quenching: Chitosan-Based Solid Carbon Dots for White Light-Emitting Diode and 3D Printing. Adv. Compos. Hybrid Mater. 2022, 5, 1865–1875. DOI: 10.1007/s42114-022-00483-6.
  • Chen, W.; Lin, H.; Wu, Y.; Yang, M.; Zhang, X.; Zhu, S.; He, M.; Xie, J.; Shi, Z. Fluorescent Probe of Nitrogen-Doped Carbon Dots Derived from Biomass for the Sensing of MnO4− in Polluted Water Based on Inner Filter Effect. Adv. Compos. Hybrid Mater. 2022, 5, 2378–2386. DOI: 10.1007/s42114-022-00443-0.
  • Algadi, H.; Albargi, H.; Umar, A.; Shkir, M. Enhanced Photoresponsivity of Anatase Titanium Dioxide (TiO2)/Nitrogen-Doped Graphene Quantum Dots (N-GQDs) Heterojunction-Based Photodetector. Adv. Compos. Hybrid Mater. 2021, 4, 1354–1366. DOI: 10.1007/s42114-021-00355-5.
  • Sun, D.; Liu, T.; Wang, C.; Yang, L.; Yang, S.; Zhuo, K. Hydrothermal Synthesis of Fluorescent Carbon Dots from Gardenia Fruit for Sensitive on-off-on Detection of Hg2+ and Cysteine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 240, 118598. DOI: 10.1016/j.saa.2020.118598.
  • Hoan, B. T.; Tam, P. D.; Pham, V. H. Green Synthesis of Highly Luminescent Carbon Quantum Dots from Lemon Juice. J. Nanotechnol. 2019, 2019, 1–9. DOI: 10.1155/2019/2852816.
  • Bandi, R.; Dadigala, R.; Gangapuram, B. R.; Guttena, V. Green Synthesis of Highly Fluorescent Nitrogen–Doped Carbon Dots from Lantana Camara Berries for Effective Detection of Lead (II) and Bioimaging. J. Photochem. Photobiol. B 2018, 178, 330–338. DOI: 10.1016/j.jphotobiol.2017.11.010.
  • Atchudan, R.; Edison, T. N.; Chakradhar, D.; Perumal, S.; Shim, J. J.; Lee, Y. R. Facile Green Synthesis of Nitrogen-Doped Carbon Dots Using Chionanthus Retusus Fruit Extract and Investigation of Their Suitability for Metal Ion Sensing and Biological Applications. Sens. Actuators B 2017, 246, 497–509. DOI: 10.1016/j.snb.2017.02.119.
  • Bhamore, J. R.; Jha, S.; Singhal, R. K.; Park, T. J.; Kailasa, S. K. Facile Green Synthesis of Carbon Dots from Pyrus Pyrifolia Fruit for Assaying of Al3+ Ion via Chelation Enhanced Fluorescence Mechanism. J. Mol. Liq. 2018, 264, 9–16. DOI: 10.1016/j.molliq.2018.05.041.
  • Miao, X.; Qu, D.; Yang, D.; Nie, B.; Zhao, Y.; Fan, H.; Sun, Z. Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization. Adv. Mater. 2018, 30, 1704740. DOI: 10.1002/adma.201704740.
  • Yang, Y.; Liu, Z.; Chen, D.; Gu, B.; Gao, B.; Wang, Z.; Guo, Q.; Wang, G. Multifunctional N-Doped Graphene Quantum Dots towards Tetracycline Detection, Temperature Sensing and High-Performance WLEDs. J. Photochem. Photobiol. A 2021, 405, 112977. DOI: 10.1016/j.jphotochem.2020.112977.
  • Zhu, C.; Liu, C.; Zhou, Y.; Fu, Y.; Guo, S.; Li, H.; Zhao, S.; Huang, H.; Liu, Y.; Kang, Z. Carbon Dots Enhance the Stability of CdS for Visible-Light-Driven Overall Water Splitting. Appl. Catal. B 2017, 216, 114–121. DOI: 10.1016/j.apcatb.2017.05.049.
  • Wu, J. B.; Lin, M. L.; Cong, X.; Liu, H. N.; Tan, P. H. Raman Spectroscopy of Graphene-Based Materials and Its Applications in Related Devices. Chem. Soc. Rev. 2018, 47, 1822–1873. DOI: 10.1039/C6CS00915H.
  • Zhang, J.; Chen, X.; Li, Y.; Han, S.; Du, Y.; Liu, H. A Nitrogen Doped Carbon Quantum Dot-Enhanced Chemiluminescence Method for the Determination of Mn2+. Anal. Methods 2018, 10, 541–547. DOI: 10.1039/C7AY02806G.
  • Zhao, S.; Song, X.; Chai, X.; Zhao, P.; He, H.; Liu, Z. Green Production of Fluorescent Carbon Quantum Dots Based on Pine Wood and Its Application in the Detection of Fe3+. J. Clean. Prod. 2020, 263, 121561. DOI: 10.1016/j.jclepro.2020.121561.
  • Qin, L.; Lu, B.; Xu, J.; Zhang, G.; Zhang, S. Novel Functionalized Conjugated Polypyrene with Polyacrylate: Synthesis, Electrochemistry, Luminescence, and Chemical Sensing Properties. RSC Adv. 2014, 4, 28368–28376. DOI: 10.1039/c4ra03193h.
  • Zhao, Y.; Liu, X.; Yang, Y.; Kang, L.; Yang, Z.; Liu, W.; Chen, L. Carbon Dots: From Intense Absorption in Visible Range to Excitation-Independent and Excitation-Dependent Photoluminescence. Fuller. Nanotub. Carbon Nanostruct. 2015, 23, 922–929. DOI: 10.1080/1536383X.2015.1018413.
  • He, J.; He, Y.; Chen, Y.; Lei, B.; Zhuang, J.; Xiao, Y.; Liang, Y.; Zheng, M.; Zhang, H.; Liu, Y. Solid‐State Carbon Dots with Red Fluorescence and Efficient Construction of Dual‐Fluorescence Morphologies. Small 2017, 13, 1700075. DOI: 10.1002/smll.201700075.
  • Sun, S.; Zhang, L.; Jiang, K.; Wu, A.; Lin, H. Toward High-Efficient Red Emissive Carbon Dots: Facile Preparation, Unique Properties, and Applications as Multifunctional Theranostic Agents. Chem. Mater. 2016, 28, 8659–8668. DOI: 10.1021/acs.chemmater.6b03695.
  • Murugesan, P.; Moses, J. A.; Anandharamakrishnan, C. One Step Synthesis of Fluorescent Carbon Dots from Neera for the Detection of Silver Ions. Spectrosc. Lett. 2020, 53, 407–415. DOI: 10.1080/00387010.2020.1764589.
  • Anh, N. T.; Chowdhury, A. D.; Doong, R. A. Highly Sensitive and Selective Detection of Mercury Ions Using N, S-Codoped Graphene Quantum Dots and Its Paper Strip Based Sensing Application in Wastewater. Sens. Actuators B 2017, 252, 1169–1178. DOI: 10.1016/j.snb.2017.07.177.
  • Wang, H.; Sun, C.; Chen, X.; Zhang, Y.; Colvin, V. L.; Rice, Q.; Seo, J.; Feng, S.; Wang, S.; William, W. Y. Excitation Wavelength Independent Visible Color Emission of Carbon Dots. Nanoscale 2017, 9, 1909–1915. DOI: 10.1039/C6NR09200D.
  • Kumar, P.; Bhatt, G.; Kaur, R.; Dua, S.; Kapoor, A. Synthesis and Modulation of the Optical Properties of Carbon Quantum Dots Using Microwave Radiation. Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 724–731. DOI: 10.1080/1536383X.2020.1752679.
  • Aslan, M.; Eskalen, H. A Study of Carbon Nanodots (Carbon Quantum Dots) Synthesized from Tangerine Juice Using One-Step Hydrothermal Method. Fuller. Nanotub. Carbon Nanostruct. 2021, 29, 1026–1033. DOI: 10.1080/1536383X.2021.1926452.
  • Tan, H. C.; Zhao, W. H.; Qiu, Q.; Zhang, R.; Zuo, Y. Y.; Yang, L. J. Green Synthesis of Nitrogen-Doped Fluorescent Carbon Quantum Dots for Selective Detection of Iron. Fuller. Nanotub. Carbon Nanostruct. 2017, 25, 417–422. DOI: 10.1080/1536383X.2017.1326102.
  • Xu, H.; Zhou, S.; Fang, W.; Fan, Y. Synthesis of N-Doped Graphene Quantum Dots from Bulk N-Doped Carbon Nanofiber Film for Fluorescence Detection of Fe3+ and Ascorbic Acid. Fuller. Nanotub. Carbon Nanostruct. 2021, 29, 218–226. DOI: 10.1080/1536383X.2020.1831474.
  • Liang, G.; Yang, S.; Zhou, H.; Shao, L.; Huang, K.; Xiao, J.; Huang, Z.; Li, X. Synthesis, Crystal Structure and anti-Inflammatory Properties of Curcumin Analogues. Eur. J. Med. Chem. 2009, 44, 915–919. DOI: 10.1016/j.ejmech.2008.01.031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.