77
Views
1
CrossRef citations to date
0
Altmetric
Articles

Optimization of sulfate removal from injection water using multi-walled carbon nanotubes by response surface methodology

, , , , , , , & show all
Pages 781-795 | Received 27 Feb 2023, Accepted 26 Apr 2023, Published online: 19 May 2023

References

  • Muggeridge, A.; Cockin, A.; Webb, K.; Frampton, H.; Collins, I.; Moulds, T.; Salino, P. Recovery Rates, Enhanced Oil Recovery and Technological Limits. Phil. Trans. R Soc. A Ou. Philos. Trans. R Soc. A-Math Phys. Eng. Sci. 2014, 372, 20120320–20120345.
  • Tajuddin, N. A.; Derawi, D.; Razak, N. A. A.; Bar, N. A.; Wilson, K. Production of Biofuel via Catalytic Upgrading and Refining of Sustainable Oleaginous Feedstocks. Handbook Biofuel. Produc. 2023, 3, 125–149.
  • Hemmati-Sarapardeh, A.; Shokrollahi, A.; Tatar, A.; Gharagheizi, F.; Mohammadi, A. H.; NaseRi, A. Reservoir Oil Viscosity Determination Using a Rigorous Approach. Fuel 2014, 116, 39–48. DOI: 10.1016/j.fuel.2013.07.072.
  • Corden, C.; Whiting, R.; Luscombe, D.; Power, O.; Ma, A.; Price, J.; Shorthose, J. Study on the Assessment and Management of Environmental Impacts and Risks from Exploration and Production of Hydrocarbons. Final Report; Amec Foster Wheeler Environment & Infrastructure UK Ltd. Publication office of the European Union, 2016.
  • Bealessio, B. A.; Alonso, N. A. B.; Mendes, N. J.; Sande, A. V.; Hascakir, B. A Review of Enhanced Oil Recovery (EOR) Methods Applied in Kazakhstan. Petroleum 2021, 7, 1–9. DOI: 10.1016/j.petlm.2020.03.003.
  • Zhang, J.; Zhao, P.; Cai, M.; Zhao, M.; Xiong, Y.; Wu, X.; Zhang, Y.; Luo, B. Estimation Method and Implications of “Secondary-Tertiary Integrated” EOR. Petr. Sci. Tech. 2020, 38, 975–982. DOI: 10.1080/10916466.2020.1806875.
  • Gharbi, R. B. Economic Optimization of EOR Processes Using Knowledge-Based System: Case Studies. Petr. Sci. Tech. 2001, 19, 797–823. DOI: 10.1081/LFT-100106901.
  • Deshmukh, M. P. Review of Enhanced Oil Recovery Techniques. Inter. J. Petr. Sci. Tech. 2020, 4, 13–16.
  • Torrey, P. D. Preparation of Water for Injection into Oil Reservoirs. J. Petr. Tech. 1955, 7, 9–16. DOI: 10.2118/463-G.
  • Su, B.; Dou, M.; Gao, X.; Shang, Y.; Gao, C. Study on Seawater Nanofiltration Softening Technology for Offshore Oilfield Water and Polymer Flooding. Desalination 2012, 297, 30–37. DOI: 10.1016/j.desal.2012.04.014.
  • Weintritt, D. J.; Cowan, J. C. Unique Characteristics of Barium Sulfate Scale Deposition. J. Petr. Tech. 1967, 19, 1381–1394. DOI: 10.2118/1523-PA.
  • Carpenter, C. Best Practices for Waterflooding Optimization Improve Oil Recovery in Mature Fields. J. Petr. Tech. 2019, 71, 58–59. DOI: 10.2118/0119-0058-JPT.
  • Dunn, K.; Yen, T. F. Dissolution of Barium Sulfate Scale Deposits by Chelating Agents. Environ. Sci. Technol. 1999, 33, 2821–2824. DOI: 10.1021/es980968j.
  • Karar, A.; Henni, A. Scale Inhibition in Hard Water System. Water Resources in Algeria-Part I: Assessment of Surface and Groundwater Resources. Springer International Publishing, 2020; Vol. 1, pp 293–318.
  • Roostaie, A.; Golghanddashti, H.; Abbasi, S.; Shahrabadi, A. An Experimental Investigation of Different Formation Waters and Injection Water Incompatibility to Obtain the Optimum Water Mixing Ratio in Injection Processes. J. Petr. Sci. Tech. 2016, 6, 63–72.
  • Kravchenko, J.; Darrah, T. H.; Miller, R. K.; Lyerly, H. K.; Vengosh, A. A Review of the Health Impacts of Barium from Natural and Anthropogenic Exposure. Environ. Geochem. Health 2014, 36, 797–814. DOI: 10.1007/s10653-014-9622-7.
  • Khormali, A.; Sharifov, A. R.; Torba, D. I. Increasing Efficiency of Calcium Sulfate Scale Prevention Using a New Mixture of Phosphonate Scale Inhibitors during Waterflooding. J. Petr. Sci. Eng. 2018, 164, 245–258. DOI: 10.1016/j.petrol.2018.01.055.
  • Mpelwa, M.; Tang, S. F. State of the Art of Synthetic Threshold Scale Inhibitors for Mineral Scaling in the Petroleum Industry: A Review. Pet. Sci. 2019, 16, 830–849. DOI: 10.1007/s12182-019-0299-5.
  • Munirasu, S.; Haija, M. A.; Banat, F. Use of Membrane Technology for Oil Field and Refinery Produced Water Treatment: A Review. Process Saf. Environ. Prot. 2016, 100, 183–202. DOI: 10.1016/j.psep.2016.01.010.
  • Ashraf, T.; Alfryyan, N.; Nasr, M.; Ahmed, S. A.; Shaban, M. Removal of Scale-Forming Ions and Oil Traces from Oil Field Produced Water Using Graphene Oxide/Polyethersulfone and TiO2 Nanoribbons/Polyethersulfone Nanofiltration Membranes. Polymers 2022, 14, 2572. DOI: 10.3390/polym14132572.
  • Su, B.; Dou, M.; Wang, Y.; Gao, X.; Gao, C. Study on Seawater Nanofiltration Softening Technology for Offshore Oilfield Polymer Solution Preparation. Desalination Water Treat 2013, 51, 5064–5073. DOI: 10.1080/19443994.2013.768367.
  • Chemil, M.; Zizi, Z.; Drouiche, N.; Khodja, M.; Hadji, M. Water Treatment Technology Performance for Chemical Enhanced Oil Recovery: Modeling, Simulation and Optimization. Appl. Water Sci. 2021, 11, 1–8. DOI: 10.1007/s13201-021-01476-4.
  • Macedo, A. T. Z. N.; Ochando-Pulido, J. M.; Fragoso, R.; Duarte, E. The Use and Performance of Nanofiltration Membranes for Agro-Industrial Effluents Purification. Nanofiltration; London: Intechopen Limited, 2018; 65–84
  • Ali, I.; Gupta, V. K. Advances in Water Treatment by Adsorption Technology. Nat. Protoc. 2006, 1, 2661–2667. DOI: 10.1038/nprot.2006.370.
  • Runtti, H.; Tuomikoski, S.; Kangas, T.; Kuokkanen, T.; Rämö, J.; Lassi, U. Sulfate Removal from Water by Carbon Residue from Biomass Gasification: Effect of Chemical Modification Methods on Sulphate Removal Efficiency. Bioresources 2016, 11, 3136–3152. DOI: 10.15376/biores.11.2.3136-3152.
  • Ao, H.; Cao, W.; Hong, Y.; Wu, J.; Wei, L. Adsorption of Sulfate Ion from Water by Zirconium Oxide-Modified Biochar Derived from Pomelo Peel. Sci. Total Environ. 2020, 708, 135092. DOI: 10.1016/j.scitotenv.2019.135092.
  • Tofighy, M. A.; Mohammadi, T. Adsorption of Divalent Heavy Metal Ions from Water Using Carbon Nanotube Sheets. J. Hazard Mater. 2011, 185, 140–147. DOI: 10.1016/j.jhazmat.2010.09.008.
  • Ding, Y.; Yang, X. B.; Ni, J. Adsorption on the Carbon Nanotubes. Front. Phys. China 2006, 1, 317–322. DOI: 10.1007/s11467-006-0019-7.
  • Liu, X.; Wang, M.; Zhang, S.; Pan, B. Application Potential of Carbon Nanotubes in Water Treatment: A Review. J. Environ. Sci. (China) 2013, 25, 1263–1280. DOI: 10.1016/s1001-0742(12)60161-2.
  • Moradi, O.; Zare, K. Adsorption of Ammonium Ion by Multi-Walled Carbon Nanotube: Kinetics and Thermodynamic Studies. Fuller Nanotub Carbon Nanostructures 2013, 21, 449–459. DOI: 10.1080/1536383X.2011.613538.
  • Anitha, K.; Namsani, S.; Singh, J. K. Removal of Heavy Metal Ions Using a Functionalized Single-Walled Carbon Nanotube: A Molecular Dynamics Study. J. Phys. Chem. A 2015, 119, 8349–8358. DOI: 10.1021/acs.jpca.5b03352.
  • Chitriv, S. P.; Chaudhary, A. K.; Yellumahanti, S. R.; Vijayakumar, R. P. Functionalization of Unzipped Multi-Walled Carbon Nanotube Oxides with l-Tyrosine for the Adsorption of Methylene Blue. Fuller Nanotub. Carbon Nanostructures 2022, 30, 1199–1206. DOI: 10.1080/1536383X.2022.2084080.
  • Yang, H. Y.; Han, Z. J.; Yu, S. F.; Pey, K. L.; Ostrikov, K.; Karnik, R. Carbon Nanotube Membranes with Ultrahigh Specific Adsorption Capacity for Water Desalination and Purification. Nat. Commun. 2013, 4, 8. DOI: 10.1038/ncomms3220.
  • Alimohammadi, V.; Sedighi, M.; Jabbari, E. Response Surface Modeling and Optimization of Nitrate Removal from Aqueous Solutions Using Magnetic Multi-Walled Carbon Nanotubes. J. Environ. Chem. Eng. 2016, 4, 4525–4535. DOI: 10.1016/j.jece.2016.10.017.
  • Boufades, D.; Hammadou Née Mesdour, S.; Moussiden, A.; Benmebrouka, H.; Ghouti, M.; Kaddour, O. Optimization of Carbon Nanotubes Synthesis via Pyrolysis over Ni/Al2O3 Using Response Surface Methodology. Fuller Nanotub. Carbon Nanostructures 2022, 30, 467–475. DOI: 10.1080/1536383X.2021.1956475.
  • Can, M. Y.; Kaya, Y.; Algur, O. F. Response Surface Optimization of the Removal of Nickel from Aqueous Solution by Cone Biomass of Pinus Sylvestris. Bioresour. Technol. 2006, 97, 1761–1765. DOI: 10.1016/j.biortech.2005.07.017.
  • Coquay, P.; Vandenberghe, R. E.; De Grave, E.; Fonseca, A.; Piedigrosso, P.; Nagy, J. B. X-Ray Diffraction and Mössbauer Characterization of an Fe/SiO2 Catalyst for the Synthesis of Carbon Nanotubes. J. Appl. Phys. 2002, 92, 1286–1291. DOI: 10.1063/1.1491589.
  • Louis, B.; Gulino, G.; Vieira, R.; Amadou, J.; Dintzer, T.; Galvagno, S.; Centi, G.; Ledoux, M. J.; Pham-Huu, C. High Yield Synthesis of Multi-Walled Carbon Nanotubes by Catalytic Decomposition of Ethane over Iron Supported on Alumina Catalyst. Catal. Today 2005, 102-103, 23–28. DOI: 10.1016/j.cattod.2005.02.031.
  • Xu, D.; Tan, X.; Chen, C.; Wang, X. Removal of Pb (II) from Aqueous Solution by Oxidized Multiwalled Carbon Nanotubes. J. Hazard Mater. 2008, 154, 407–416. DOI: 10.1016/j.jhazmat.2007.10.059.
  • Das, R.; Hamid, S.; Ali, M.; Ramakrishna, S.; Yongzhi, W. Carbon Nanotubes Characterization by X-Ray Powder Diffraction–a Review. CNanosci. 2015, 11, 23–35. DOI: 10.2174/1573413710666140818210043.
  • Tan, W. H.; Lee, S. L.; Chong, C. T. TEM and XRD Analysis of Carbon Nanotubes Synthesised from Flame. KEM 2016, 723, 470–475. DOI: 10.4028/www.scientific.net/KEM.723.470.
  • Ansari, A.; Mehrabian, M. A.; Hashemipour, H. Zinc Ion Adsorption on Carbon Nanotubes in an Aqueous Solution. Pol. J. Chem. Technol. 2012, 14, 29–37. DOI: 10.2478/v10026-012-0081-6.
  • Jamil, N.; Ahsan, N.; Munawar, M. A.; Anwar, J.; Shafique, U. Removal of Toxic Dichlorophenol from Water by Sorption with Chemically Activated Carbon of Almond Shells: A Green Approach. J. Chem. Soc. Pak. 2011, 33, 640–645.
  • Lagergren, S.; Svenska, B. K. Zur Theorie Der Sogenannten Adsorptiogeloester Stoffe, Veteskapsakad. Handle 1898, 24, 1–39.
  • Ho, Y. S.; Mc Kay, G. The Kinetics of Sorption of Divalent Metal Ions onto Sphaghum Moss Peat. Water Res. 2000, 34, 735–742. DOI: 10.1016/S0043-1354(99)00232-8.
  • Hong, S.; Cannon, F. S.; Hou, P.; Byrne, T.; Nieto-Delgado, C. Adsorptive Removal of Sulfate from Acid Mine Drainage by Polypyrrole Modified Activated Carbons: Effects of Polypyrrole Deposition Protocols and Activated Carbon Source. Chemosphere 2017, 184, 429–437. DOI: 10.1016/j.chemosphere.2017.06.019.
  • Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. DOI: 10.1021/ja02242a004.
  • Freundlich, H. M. F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385–470.
  • Aljeboree, A. M.; Alkaim, A. F.; Al-Dujaili, A. H. Adsorption Isotherm, Kinetic Modeling and Thermodynamics of Crystal Violet Dye on Coconut Huskbased Activated Carbon. Desal. Water Treat. 2015, 53, 3656–3667. DOI: 10.1080/19443994.2013.877854.
  • Myers, R. H.; Khuri, A. I.; Carter, W. H.; Khuri, A. I. Response Surface Methodology. Technometrics 1989, 31, 137–157. DOI: 10.2307/1268813.
  • Alimohammadi, V.; Sedighi, M.; Jabbari, E. Optimization of Sulfate Removal from Wastewater Using Magnetic Multi-Walled Carbon Nanotubes by Response Surface Methodology. Water Sci. Technol. 2017, 76, 2593–2602. DOI: 10.2166/wst.2017.424.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.