106
Views
0
CrossRef citations to date
0
Altmetric
Articles

Template synthesis of B-doped graphene-like carbon nanomaterial from phenylboronic acid

, , &
Pages 796-803 | Received 02 Mar 2023, Accepted 26 Apr 2023, Published online: 09 May 2023

References

  • Alkahtani, M.; Zharkov, D. K.; Leontyev, A. V.; Shmelev, A. G.; Nikiforov, V. G.; Hemmer, P. R. Lightly Boron-Doped Nanodiamonds for Quantum Sensing Applications. Nanomaterials 2022, 12, 601. DOI: 10.3390/nano12040601.
  • Sawant Sh, V.; Patwardhan, A. W.; Joshi, J. B.; Dasgupta, K. Boron Doped Carbon Nanotubes: Synthesis, Characterization and Emerging Applications – A Review. Chem. Eng. J. 2022, 427, 131616. DOI: 10.1016/j.cej.2021.131616.
  • Tumanskii, B. L.; Sabirov, D. S.; Solodovnikov, S. P.; Lyakhovetsky, Y. I. Manganese(III) Acetate-Mediated Activation of C–H Bonds of Weak CH-Acids; Addition of o-Carborane, Its Derivatives, and Some Other CH-Acids to [60]-Fullerene. Dalton Trans. 2019, 48, 2046–2058. DOI: 10.1039/C8DT04565H.
  • Arie, A. A.; Lee, J. K. Synthesis of Boron-Doped C60 Film Using Plasma-Assisted Thermal Evaporation Technique and Its Electrochemical Characterizations. Fuller, Nanotub. Carbon Nanostruct. 2012, 20, 216–223. V Issue 2012DOI: 10.1080/1536383X.2010.542592.
  • Vergara Reyes, H. N.; Chigo Anota, E.; Castro, M. C60-like Boron Carbide and Carbon Nitride Fullerenes: Stability and Electronic Properties Obtained by DFT Methods. Fuller, Nanotub. Carbon Nanostruct. 2018, 26, 52–60. VIssue DOI: 10.1080/1536383X.2017.1402006.
  • Agnoli, S.; Favaro, M. Doping Graphene with Boron: A Review of Synthesis Methods, Physicochemical Characterization, and Emerging Applications. J. Mater. Chem. A 2016, 4, 5002–5025. DOI: 10.1039/C5TA10599D.
  • Lonkar, S. P.; Deshmukh, Y. S.; Abdala, A. A. Recent Advances in Chemical Modifications of Graphene. Nano Res. 2015, 8, 1039–1074. DOI: 10.1007/s12274-014-0622-9.
  • Singh, M.; Kaushal, S.; Singh, P.; Sharma, J. Boron Doped Graphene Oxide with Enhanced Photocatalytic Activity for Organic Pollutants. J. Photochem. Photobiol. A: Chem. 2018, 364, 130–139. DOI: 10.1016/j.jphotochem.2018.06.002.
  • Kaur, M.; Ubhi, M. K.; Grewal, J. K.; Sharma, V. K. Boron- and Phosphorous-Doped Graphene Nanosheets and Quantum Dots as Sensors and Catalysts in Environmental Applications: A Review. Environ. Chem. Lett. 2021, 19, 4375–4392. DOI: 10.1007/s10311-021-01281-0.
  • Zhang, B.; Zhang, G.; Cheng, Z.; Ma, F.; Lu, Z. Atomic-Scale Friction Adjustment Enabled by Doping-Induced Modification in Graphene Nanosheet. Appl. Surf. Sci. 2019, 483, 742–749. DOI: https://doi.org/10.1016/j.apsusc.2019.03.267.
  • Liu, C.; Jin, E.; He, S.; Luo, S.; Lin, M. Molecular Dynamics Study on Doping Defected Graphene by Boron. Fuller, Nanotub. Carbon Nanostruct. 2016, 24, 363–370. DOI: 10.1080/1536383X.2016.1160223.
  • Yang, L.; Jiang, S.; Zhao, Y.; Zhu, L.; Chen, S.; Wang, X.; Wu, Q.; Ma, J.; Ma, Y.; Hu, Z. Boron-Doped Carbon Nanotubes as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. Engl. 2011, 50, 7132–7135. DOI: 10.1002/anie.201101287.
  • Wang, S.; Zhang, L.; Xia, Z.; Roy, A.; Chang, D. W.; Baek, J. B.; Dai, L. Boron-Doped Carbon Nanotubes as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. Engl. 2012, 51, 4209–4212. DOI: 10.1002/anie.201109257.
  • Sheng, Z.-H.; Gao, H.-L.; Bao, W.-J.; Wang, F.-B.; Xia, X.-H. Synthesis of Boron Doped Graphene for Oxygen Reduction Reaction in Fuel Cells. J. Mater. Chem. 2012, 22, 390–395. DOI: 10.1039/C1JM14694G.
  • Lilloja, J.; Kibena-Põldsepp, E.; Merisalu, M.; Rauwel, P.; Matisen, L.; Niilisk, A.; Cardoso, E. S. F.; Maia, G.; Sammelselg, V.; Tammeveski, K. An Oxygen Reduction Study of Graphene-Based Nanomaterials of Different Origin. Catalysts 2016, 6, 108. DOI: 10.3390/catal6070108.
  • Heroux, D. S.; Volodin, A. M.; Zaikovski, V. I.; Chesnokov, V. V.; Bedilo, A. F.; Klabunde, K. J. ESR and HRTEM Study of Carbon-Coated Nanocrystalline MgO. J. Phys. Chem. B 2004, 108, 3140–3144. VNDOI: 10.1021/jp036307c.
  • Chesnokov, V. V.; Zaikovskii, V. I.; Soshnikov, I. E. Nanoscale Carbon Formation from Various Hydrocarbons over Nanocrystalline Co/MgO Catalyst. J. Phys. Chem. C 2007, 111, 7868–7874. VNDOI: 10.1021/jp068847q.
  • Chesnokov, V. V.; Chichkan, A. S.; Bedilo, A. F.; Shuvarakova, E. I.; Parmon, V. N. Template Synthesis of Graphene. Dokl. Phys. Chem. 2019, 488, 154–157. VN DOI: 10.1134/S0012501619100038.
  • Chesnokov, V. V.; Chichkan, A. S.; Bedilo, A. F.; Shuvarakova, E. I. Synthesis of Carbon-Mineral Composites and Graphene. Fuller, Nanotub. Carbon Nanostruct. 2020, 28, 402–406. VN DOI: 10.1080/1536383X.2019.1695249.
  • Chesnokov, V. V.; Chichkan, A. S.; Svintsitskiy, D. A.; Gerasimov, E. Y.; Parmon, V. N. A Method for Synthesis of Nitrogen-Doped Graphene with High Specific Surface Area. Dokl. Phys. Chem. 2020, 495, 159–165. VNDOI: 10.1134/S0012501620110019.
  • Chesnokov, V. V.; Chichkan, A. S.; Gerasimov, E. Y. Effect of Synthesis Conditions on the Properties of Graphene Doped with Nitrogen Atoms. Fuller, Nanotub. Carbon Nanostruct. 2022, 30, 10–14. VN DOI: 10.1080/1536383x.2021.199455325.
  • Levinter, M. E.; Medvedeva, M. I.; Panchenkov, G. M.; Aseev, Y.; Nedoshivin, Y.; Finkel’shtein, G. B.; Galiakbarov, M. F. Mechanism of Coke Formation in the Cracking of Component Groups in Petroleum Residues. Chem. Technol. Fuels Oils 1966, 2, 628–632. DOI: 10.1007/BF00719152.
  • Levinter, M. E.; Medvedeva, M. I.; Panchenkov, G. M.; Agapov, G. I. Kinetics of Coke Formation during Cracking of Group Components of Petroleum Residue. Chem Technol. Fuels Oils 1966, 2, 766–769. DOI: 10.1007/BF00718877.
  • Rudenko, A. P. Modern Problems of Physical Chemistry, MGU, Moscow, 1968. (in Russian).
  • Kretinin, M. V. Mechanotechnological Aspects of Petroleum Coke Production. GUP INKhP RB, Ufa, 2009 (in Russian).
  • Chesnokov, V. V.; Dik, P. P.; Chichkan, A. S. Formic Acid as a Hydrogen Donor for Catalytic Transformations of Tar. Energies 2020, 13, 4515. VN4515: DOI: 10.3390/en13174515.
  • Buyanov, R. A. Catalyst Coking, Nauka, Novosibirsk, 1983 (in Russian).
  • Chesnokov, V. V.; Chichkan, A. S. Effect of Catalysts on Tar Carbonization. Catal. Today 2021, 379, 28–35. V DOI: 10.1016/j.cattod.2020.08.002.
  • Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA Quantum Chemistry Program Package. J. Chem. Phys. 2020, 152, 224108. V DOI: 10.1063/5.0004608.
  • Chesnokov, V. V.; Kriventsov, V. V.; Prosvirin, I. P.; Gerasimov, E. Y. Effect of Platinum Precursor on the Properties of Pt/N-Graphene Catalysts in Formic Acid Decomposition. Catalysts 2022, 12, 1022. DOI: 10.3390/catal12091022.
  • http://xpspeak.software.informer.com/4.1/.
  • Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman Microspectroscopy of Soot and Related Carbonaceous Materials: Spectral Analysis and Structural Information. Carbon 2005, 43, 1731–1742. DOI: 10.1016/j.carbon.2005.02.018.
  • Mannan, M. A.; Hirano, Y.; Quitain, A. T.; Koinuma, M.; Kida, T. Boron Doped Graphene Oxide: Synthesis and Application to Glucose Responsive Reactivity. J Material Sci. Eng. 2017, v7, 1000492. DOI: 10.4172/2169-0022.1000492.
  • Byeon, A.; Park, J.; Baik, S.; Jung, Y.; Lee, J. W. Effects of Boron Oxidation State on Electrocatalytic Activity of Carbons Synthesized from CO2. J. Mater. Chem. A 2015, v3, 5843–5849. DOI: 10.1039/C4TA05979D.
  • Febvrier, A.; Jensen, J.; Eklund, P. Wet-Cleaning of MgO (001): Modification of Surface Chemistry and Effects on Thin Film Growth Investigated by X-Ray Photoelectron Spectroscopy and Time-of-Flight Secondary Ion Mass Spectroscopy. J. Vac. Sci. Technol. A 2017, v35, 021407. DOI: 10.1116/1.4975595.
  • Creasey, J. J.; Chieregato, A.; Manayil, J. C.; Parlett, C. M. A.; Wilson, K.; Lee, A. F. Alkali- and Nitrate-Free Synthesis of Highly Active Mg–Al Hydrotalcite-Coated Alumina for FAME Production. Catal. Sci. Technol. 2014, v4, 861–870. DOI: 10.1039/C3CY00902E.
  • Yun, J.; Chen, L.; Zhang, X.; Feng, J.; Liu, L. The Effect of Introducing B and N on Pyrolysis Process of High Ortho Novolac Resin. Polymers 2016, v8, 35. DOI: 10.3390/polym8030035.
  • Lin, H.; Chu, L.; Wang, X.; Yao, Z.; Liu, F.; Ai, Y.; Zhuang, X.; Han, S. Boron, Nitrogen, and Phosphorous Ternary Doped Graphene Aerogel with Hierarchically Porous Structures as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction. New J. Chem. 2016, 40, 6022–6029. DOI: 10.1039/C5NJ03390J.
  • Wu, P.-Y.; Jiang, Y.-P.; Zhang, Q.-Y.; Jia, Y.; Peng, D.-Y.; Xu, W. Comparative Study on Arsenate Removal Mechanism of MgO and MgO/TiO2 Composites: FTIR and XPS Analysis. New J. Chem. 2016, 40, 2878–2885. DOI: 10.1039/C5NJ02358K.
  • Toderas, M.; Filip, S.; Ardelean, I. Structural Study of the Fe2O3-B2O3-BaO Glass System by FTIR Spectroscopy. J. Optoelectron. Adv. Mater. 2006, 8, 1121–1123.
  • Lazzari, R.; Vast, N.; Besson, J. M.; Baroni, S.; Corso, A. D. In Situ Synthesis of B4C–SiC, B4C–TiB2, and B4C–ZrB2 Composites from Organic–Inorganic Hybrid Precursor via a Simple Bottom-up Approach. Phys. Rev. Lett. 1999, 83, 3230–3233. DOI: 10.1103/PhysRevLett.83.3230.
  • Ergun, C.; Ozcelik, B. K. Boronated Carbon and Boron Carbide Synthesize via Aerosol Method. Powder Technol. 2012, 228, 334–338. DOI: 10.1016/j.powtec.2012.05.049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.