112
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Preparation of Fe3O4-carbon black/poly(vinylidene fluoride) composites with enhanced properties

, , , , &
Pages 805-814 | Received 20 Mar 2023, Accepted 28 Apr 2023, Published online: 15 May 2023

References

  • He, F.; Lau, S.; Chan, H.; Fan, J. High Dielectric Permittivity and Low Percolation Threshold in Composites Based on Poly(Vinylidene Fluoride) and Exfoliated Graphite Nanosheets. Adv. Mater. 2009, 21, 710–715. DOI: 10.1002/adma.200801758.
  • He, F.; Kim, M.; Chen, S.; Wu, Y.; Lam, K.; Chan, H.; Fan, J. Tough and Porous Piezoelectric P(VDF-TrFE)/Organosilicate Composite Membrane. High Perform. Polym. 2017, 29, 133–140. DOI: 10.1177/0954008316631611.
  • He, F.-A.; Lin, K.; Shi, D.-L.; Wu, H.-J.; Huang, H.-K.; Chen, J.-J.; Chen, F.; Lam, K.-H. Preparation of Organosilicate/PVDF Composites with Enhanced Piezoelectricity and Pyroelectricity by Stretching. Compos. Sci. Technol. 2016, 137, 138–147. DOI: 10.1016/j.compscitech.2016.10.031.
  • Chen, J.; Li, Y.; Zheng, X.; He, F.; Lam, K. Enhancement in Electroactive Crystalline Phase and Dielectric Performance of Novel PEG-Graphene/PVDF Composites. Appl. Surf. Sci. 2018, 448, 320–330. DOI: 10.1016/j.apsusc.2018.04.144.
  • Lin, B.; Pan, L.-H.; Shi, D.-L.; Huang, H.-K.; He, F.-A.; Lam, K.-H.; Wu, H.-J. Preparation and Characterization of Composites Based on Poly(Vinylidene Fluoride-co-Chlorotrifluoroethylene) and Carbon Nanofillers: A Comparative Study of Exfoliated Graphite Nanoplates and Multi-Walled Carbon Nanotubes. J. Mater. Sci. 2019, 54, 2256–2270. DOI: 10.1007/s10853-018-3005-x.
  • Lin, B.; Li, Z.-T.; Yang, Y.; Li, Y.; Lin, J.-C.; Zheng, X.-M.; He, F.-A.; Lam, K.-H. Enhanced Dielectric Permittivity in Surface-Modified Graphene/PVDF Composites Prepared by an Electrospinning-Hot Pressing Method. Compos. Sci. Technol. 2019, 172, 58–65. DOI: 10.1016/j.compscitech.2019.01.003.
  • Cheng, H. R.; Pan, Y. M.; Chen, Q.; Che, R. C.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Liu, X. H. Ultrathin Flexible Poly(Vinylidene Fluoride)/MXene/Silver Nanowire Film with Outstanding Specific EMI Shielding and High Heat Dissipation. Adv. Compos. Hybrid Mater. 2021, 4, 505–513. DOI: 10.1007/s42114-021-00224-1.
  • Saxena, P.; Shukla, P. A Comprehensive Review on Fundamental Properties and Applications of Poly(Vinylidene Fluoride) (PVDF). Adv. Compos. Hybrid Mater. 2021, 4, 8–26. DOI: 10.1007/s42114-021-00217-0.
  • Sharafkhani, S.; Kokabi, M. Enhanced Sensing Performance of Polyvinylidene Fluoride Nanofibers Containing Preferred Oriented Carbon Nanotubes. Adv. Compos. Hybrid Mater. 2022, 5, 3081–3093. DOI: 10.1007/s42114-022-00565-5.
  • Moharana, S.; Yadav, T.; Alvi, P.; Pathak, A.; Mahaling, R. Enhanced Dielectric and Electrical Properties of Triphase Percolative PVDF–BiFeO3–Carbon Black (CB) Composite Film. J. Mater. Sci. Mater. Electron. 2021, 32, 6038–6046.
  • He, F.; Lam, K.; Ma, D.; Fan, J.; Chan, H.; Zhang, L. Fabrication and Characterization of graphene-Fe3O4 Hybrids and Syndiotactic Polystyrene/Graphene–Fe3O4 Nanocomposites. Carbon 2013, 58, 175–184. DOI: 10.1016/j.carbon.2013.02.047.
  • Chen, Y.; Dong, Y. Q.; Yan, Z.; Chen, D.; Chen, Y.; Wang, L. H. Characteristic Analysis of Fe3O4 Nanoparticles Modified by Oleic Acid and Undecylenic Acid. Fullerenes Nanotubes Carbon Nanostruct. 2017, 25, 363–370. DOI: 10.1080/1536383X.2017.1310721.
  • Tavakoli, M.; Safa, F.; Abedinzadeh, N. Binary Nanocomposite of Fe3O4/MWCNTs for Adsorption of Reactive Violet 2: Taguchi Design, Kinetics and Equilibrium Isotherms. Fullerenes Nanotubes Carbon Nanostruct. 2019, 27, 305–316. DOI: 10.1080/1536383X.2018.1563543.
  • Wang, X.; Qi, Y. Y.; Hu, Z. R.; Jiang, L. J.; Pan, F.; Xiang, Z.; Xiong, Z. Q.; Jia, W. W.; Hu, J. Z.; Lu, W. Fe3O4@PVP@DOX Magnetic Vortex Hybrid Nanostructures with Magnetic-Responsive Heating and Controlled Drug Delivery Functions for Precise Medicine of Cancers. Adv. Compos. Hybrid Mater. 2022, 5, 1786–1798. DOI: 10.1007/s42114-022-00433-2.
  • Guo, J.; Chen, Z. R.; El-Bahy, Z. M.; Liu, H.; Abo-Dief, H. M.; Abdul, W.; Abualnaja, K. M.; Alanazi, A. K.; Zhang, P.; Huang, M. N.; et al. Tunable Negative Dielectric Properties of Magnetic CoFe2O4/Graphite-Polypyrrole Metacomposites. Adv. Compos. Hybrid Mater. 2022, 5, 899–906. DOI: 10.1007/s42114-022-00485-4.
  • Wojtaś, M.; Karpinsky, D. V.; Silibin, M. V.; Gavrilov, S. A.; Sysa, A. V.; Nekludov, K. N. Dielectric Properties of Graphene Oxide Doped P(VDF-TrFE) Films. Polym. Test. 2017, 60, 326–332. DOI: 10.1016/j.polymertesting.2017.04.003.
  • Wojtaś, M.; Karpinsky, D. V.; Silibin, M. V.; Gavrilov, S. A.; Sysa, A. V.; Nekludov, K. N.; Dubkov, S. V. Pyroelectricity in Graphene Oxide Doped P(VDF-TrFE) Films. Polym. Test. 2018, 71, 296–300. DOI: 10.1016/j.polymertesting.2018.09.013.
  • Yang, C.; Hao, S.; Dai, S.; Zhang, X. Nanocomposites of Poly(Vinylidene Fluoride) - Controllable Hydroxylated/Carboxylated Graphene with Enhanced Dielectric Performance for Large Energy Density Capacitor. Carbon 2017, 117, 301–312. DOI: 10.1016/j.carbon.2017.03.004.
  • Nan, C.; Shen, Y.; Ma, J. Physical Properties of Composites near Percolation. Annu. Rev. Mater. Res. 2010, 40, 131–151. DOI: 10.1146/annurev-matsci-070909-104529.
  • Dang, Z.; Zheng, M.; Zha, J. 1D/2D Carbon Nanomaterial-Polymer Dielectric Composites with High Permittivity for Power Energy Storage Applications. Small 2016, 12, 1688–1701. DOI: 10.1002/smll.201503193.
  • Kuang, T. R.; Zhang, M. L.; Chen, F.; Fei, Y. P.; Yang, J. T.; Zhong, M. Q.; Wu, B. Z.; Liu, T. Creating Poly(Lactic Acid)/Carbon Nanotubes/Carbon Black Nanocomposites with High Electrical Conductivity and Good Mechanical Properties by Constructing a Segregated Double Network with a Low Content of Hybrid Nanofiller. Adv. Compos. Hybrid Mater. 2023, 6, 48.
  • Kha Tu, N. D.; Noh, M.-S.; Ko, Y.; Kim, J.-H.; Kang, C. Y.; Kim, H. Enhanced Electromechanical Performance of P(VDF-TrFE-CTFE) Thin Films Hybridized with Highly Dispersed Carbon Blacks. Compos. Part B: Eng. 2018, 152, 133–138. DOI: 10.1016/j.compositesb.2018.06.036.
  • Cai, J.; Hu, N.; Wu, L.; Liu, Y.; Li, Y.; Ning, H.; Liu, X.; Lin, L. Preparing Carbon Black/Graphene/PVDF-HFP Hybrid Composite Films of High Piezoelectricity for Energy Harvesting Technology. Compos. Part A 2019, 121, 223–231. DOI: 10.1016/j.compositesa.2019.03.031.
  • Mohan, A.; Manoj, B.; John, J.; Ramya, A. Structural Characterization of Paraffin Wax Soot and Carbon Black by XRD. Asian J. Chem. 2013, 25, S76.
  • Lee, S.; Lee, S.; Roh, J. Analysis of Activation Process of Carbon Black Based on Structural Parameters Obtained by XRD Analysis. Crystals 2021, 11, 153. DOI: 10.3390/cryst11020153.
  • Xie, Z.-W.; Lin, J.-C.; Xu, M.-Y.; Wang, H.-Y.; Wu, Y.-X.; He, F.-A.; Jiang, H.-L. Novel Fe3O4 Nanoparticle/β-Cyclodextrin-Based Polymer Composites for the Removal of Methylene Blue from Water. Ind. Eng. Chem. Res. 2020, 59, 12270–12281. DOI: 10.1021/acs.iecr.0c01115.
  • Sultana, T.; Georgiev, G.; Auner, G.; Newaz, G.; Herfurth, H.; Patwa, R. XPS Analysis of Laser Transmission Micro-Joint between Poly(Vinylidene Fluoride) and Titanium. Appl. Sur. Sci. 2008, 255, 2569–2573. DOI: 10.1016/j.apsusc.2008.07.149.
  • Tamang, A.; Ghosh, S. K.; Garain, S.; Alam, M. M.; Haeberle, J.; Henkel, K.; Schmeisser, D.; Mandal, D. DNA-Assisted β-Phase Nucleation and Alignment of Molecular Dipoles in PVDF Film: A Realization of Self-Poled Bioinspired Flexible Polymer Nanogenerator for Portable Electronic Devices. ACS Appl. Mater. Interfaces 2015, 7, 16143–16147. DOI: 10.1021/acsami.5b04161.
  • Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. Electroactive Phases of Poly(Vinylidene Fluoride): Determination, Processing and Applications. Progr. Polym. Sci. 2014, 39, 683–706. DOI: 10.1016/j.progpolymsci.2013.07.006.
  • Garain, S.; Jana, S.; Sinha, T.; Mandal, D. Design of in Situ Poled Ce3+-Doped Electrospun PVDF/Graphene Composite Nanofifibers for Fabrication of Nanopressure Sensor and Ultrasensitive Acoustic Nanogenerator. ACS Appl. Mater. Interfaces 2016, 8, 4532–4540. DOI: 10.1021/acsami.5b11356.
  • Zhang, K.; Yu, H.-O.; Yu, K.-X.; Gao, Y.; Wang, M.; Li, J.; Guo, S. A Facile Approach to Constructing Efficiently Segregated Conductive Networks in Poly(Lactic Acid)/Silver Nanocomposites via Silver Plating on Microfibers for Electromagnetic Interference Shielding. Compos. Sci. Technol. 2018, 156, 136–143. DOI: 10.1016/j.compscitech.2017.12.037.
  • Li, Z. Y.; Shen, Z. H.; Yang, X.; Zhu, X. M.; Zhou, Y.; Dong, L. J.; Xiong, C. X.; Wang, Q. Ultrahigh Charge-Discharge Efficiency and Enhanced Energy Density of the Sandwiched Polymer Nanocomposites with Poly(Methyl Methacrylate) Layer. Compos. Sci. Technol. 2021, 202, 305–316.
  • Gong, Y. T.; Li, Z. Z.; Li, H. R.; Wu, W. Q.; Zhou, W. J.; Zhao, J. Y.; He, C. G.; Jiang, M. Ultra-Tough Room-Temperature Dielectric Switching Ionic Gels with Long-Cycle Stability. Adv. Funct. Mater. 2022, 32, 2207452. DOI: 10.1002/adfm.202207452.
  • Wu, W. F.; Liu, X. Q.; Qiang, Z.; Yang, J. Y.; Liu, Y. H.; Huai, K.; Zhang, B. L.; Jin, S. X.; Xia, Y. M.; Fu, K. K.; et al. Inserting Insulating Barriers into Conductive Particle Channels: A New Paradigm for Fabricating Polymer Composites with High Dielectric Permittivity and Low Dielectric Loss. Compos. Sci. Technol. 2021, 216, 109070. DOI: 10.1016/j.compscitech.2021.109070.
  • Xu, J.; Fu, C.; Chu, H.; Wu, X.; Tan, Z.; Qian, J.; Li, W.; Song, Z.; Ran, X.; Nie, W. Enhanced Energy Density of PVDF-Based Nanocomposites via a Core–Shell Strategy. Sci. Rep. 2020, 10, 17084. DOI: 10.1038/s41598-020-73884-6.
  • Zhou, Y.; Liu, Q.; Chen, F.; Li, X.; Sun, S.; Guo, J.; Zhao, Y.; Yang, Y.; Xu, J. Gradient Dielectric Constant Sandwich-Structured BaTiO3/PMMA Nanocomposites with Strengthened Energy Density and Ultralow-Energy Loss. Ceram. Int. 2021, 47, 5112-5122.
  • Wang, D.; Bao, Y.; Zha, J.; Zhao, J.; Dang, Z.; Hu, G. Improved Dielectric Properties of Nanocomposites Based on Poly(Vinylidene Fluoride) and Poly(Vinylalcohol)-Functionalized Graphene. ACS Appl. Mater. Interfaces 2012, 4, 6273–6279. DOI: 10.1021/am3018652.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.