176
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Environmentally friendly g-C3N4/carbon quantum dots nanocomposites as fluorescent and anti-spoofing inks

, &
Pages 953-960 | Received 09 May 2023, Accepted 12 Jun 2023, Published online: 22 Jun 2023

References

  • Aslan, M.; Eskalen, H. A Study of Carbon Nanodots (Carbon Quantum Dots) Synthesized from Tangerine Juice Using One-Step Hydrothermal Method. Fuller. Nanotub. Carbon. Nanostruct. 2021, 29, 1026–1033. DOI: 10.1080/1536383X.2021.1926452.
  • Ni, J.; Huang, X.; Bai, Y.; Zhao, B.; Han, Y.; Han, S.; Xu, T.; Si, C.; Zhang, C. Resistance to Aggregation-Caused Quenching: Chitosan-Based Solid Carbon Dots for White Light-Emitting Diode and 3D Printing. Adv. Compos. Hybrid Mater. 2022, 5, 1865–1875. DOI: 10.1007/s42114-022-00483-6.
  • Madhi, A.; Shirkavand Hadavand, B. Bio-Based Surface Modification of Wool Fibers by Chitosan-Graphene Quantum Dots Nanocomposites. Iran. J. Chem. Chem. Eng. 2022, 41, 2202–2212. DOI: 10.30492/IJCCE.2021.527475.4657.
  • Chen, W.; Lin, H.; Wu, Y.; Yang, M.; Zhang, X.; Zhu, S.; He, M.; Xie, J.; Shi, Z. Fluorescent Probe of Nitrogen-Doped Carbon Dots Derived from Biomass for the Sensing of MnO4− in Polluted Water Based on Inner Filter Effect. Adv. Compos. Hybrid Mater. 2022, 5, 2378–2386. DOI: 10.1007/s42114-022-00443-0.
  • Ma, X.; Zhong, W.; Zhao, J.; Suib, S. L.; Lei, Y, Department of Biomedical Engineering, University of Connecticut, 06269, USA Self-Heating Enabled One-Pot Synthesis of Fluorescent Carbon Dots. Eng. Sci. 2020, 9, 44–49. DOI: 10.30919/es8d805.
  • Algadi, H.; Albargi, H.; Umar, A.; Shkir, M. Enhanced Photoresponsivity of Anatase Titanium Dioxide (TiO2)/Nitrogen-Doped Graphene Quantum Dots (N-GQDs) Heterojunction-Based Photodetector. Adv. Compos. Hybrid Mater. 2021, 4, 1354–1366. DOI: 10.1007/s42114-021-00355-5.
  • Samra, K. S.; Singh, A.; Manpreet. Facile Synthesis of Graphene Quantum Dots and Their Optical Characterization. Fuller. Nanotub. Carbon. Nanostruct. 2021, 29, 638–642. DOI: 10.1080/1536383X.2021.1878152.
  • Pang, S. A pH Sensitive Fluorescent Carbon Dots for Urea and Urease Detection. Fuller. Nanotub. Carbon. Nanostruct. 2020, 28, 752–760. DOI: 10.1080/1536383X.2020.1759039.
  • Vijeata, A.; Chaudhary, G. R.; Umar, A.; Chaudhary, S. Distinctive Solvatochromic Response of Fluorescent Carbon Dots Derived from Different Components of Aegle Marmelos Plant. Eng. Sci. 2021, 15, 197–209. DOI: 10.30919/es8e512.
  • Algadi, H.; Das, T.; Ren, J.; Li, H. High-Performance and Stable Hybrid Photodetector Based on a Monolayer Molybdenum Disulfide (MoS2)/Nitrogen Doped Graphene Quantum Dots (NH2 GQDs)/All-Inorganic (CsPbBr3) Perovskite Nanocrystals Triple Junction. Adv. Compos. Hybrid Mater. 2023, 6, 56. DOI: 10.1007/s42114-023-00634-3.
  • Kumari, M.; Chaudhary, G. R.; Chaudhary, S.; Umar, A. Rapid Analysis of Trace Sulphite Ion Using Fluorescent Carbon Dots Produced from Single Use Plastic Cups. Eng. Sci. 2021, 17, 101–112. DOI: 10.30919/es8d556.
  • Muthamma, K.; Sunil, D.; Shetty, P. Carbon Dots as Emerging Luminophores in Security Inks for anti-Counterfeit applications-An up-to-Date Review. Appl. Mater. Today 2021, 23, 101050. DOI: 10.1016/j.apmt.2021.101050.
  • Madhi, A.; Shirkavand Hadavand, B. Fluorescent Epoxy-Graphene Quantum Dots Nanocomposites: Synthesis and Study of Properties. Polym-Plast. Technol. Mater. 2022, 61, 117–130. DOI: 10.1080/25740881.2021.1959929.
  • Kumar, P.; Bhatt, G.; Kaur, R.; Dua, S.; Kapoor, A. Synthesis and Modulation of the Optical Properties of Carbon Quantum Dots Using Microwave Radiation. Fuller. Nanotub. Carbon Nanostructures 2020, 28, 724–731. DOI: 10.1080/1536383X.2020.1752679.
  • Madhi, A.; Shirkavand Hadavand, B. Chemical Treatment of Cotton Fabric by Eco-Friendly Carbon Quantum Dots-Chitosan Nanocomposites. Appl. Chem. 2022, 17, 55–66. DOI: 10.22075/chem.2021.23723.1988.
  • Xu, Y.; Li, D.; Liu, M.; Niu, F.; Liu, J.; Wang, E. Enhanced-Quantum Yield Sulfur/Nitrogen co-Doped Fluorescent Carbon Nanodots Produced from Biomass Enteromorpha Prolifera: Synthesis, Posttreatment, Applications and Mechanism Study. Sci. Rep. 2017, 7, 4499. DOI: 10.1038/s41598-017-04754-x.
  • Jin, X.-Y.; Ying, W.-Y.; Che, R.-J.; Xiao, P.; Zhou, Y.-Q.; Liu, Y.; Liu, M.-Y.; Chen, S.-P. CQDs/ZnO Composites Based on Waste Rice Noodles: Preparation and Photocatalytic Capability. RSC Adv. 2022, 12, 23692–23703. DOI: 10.1039/D2RA03709B.
  • Xie, X.; Gao, H.; Luo, X.; Zhang, Y.; Qin, Z.; Ji, H. Polyethyleneimine-Modified Magnetic Starch Microspheres for Cd (II) Adsorption in Aqueous Solutions. Adv. Compos. Hybrid Mater. 2022, 5, 2772–2786. DOI: 10.1007/s42114-022-00422-5.
  • Wei, H.; Ma, J.; Shi, Y.; Cui, D.; Liu, M.; Lu, N.; Wang, N.; Wu, T.; Wujcik, E. K.; Guo, Z. Sustainable Cross-Linked Porous Corn Starch Adsorbents with High Methyl Violet Adsorption. ES Mater. Manuf. 2018, 2, 28–34. DOI: 10.30919/esmm5f162.
  • Pan, M.; Xie, X.; Liu, K.; Yang, J.; Hong, L.; Wang, S. Fluorescent Carbon Quantum Dots-Synthesis, Functionalization and Sensing Application in Food Analysis. Nanomaterials 2020, 10, 930. DOI: 10.3390/nano10050930.
  • Liu, X.; Zheng, J.; Yang, Y.; Chen, Y.; Liu, X. Preparation of N-Doped Carbon Dots Based on Starch and Their Application in White LED. Opt. Mater. 2018, 86, 530–536. DOI: 10.1016/j.optmat.2018.10.057.
  • Qiang, R. B.; Yang, S. R.; Hou, K. M.; Wang, J. Q. Synthesis of Carbon Quantum Dots with Green Luminescence from Potato Starch. New J. Chem. 2019, 43, 10826–10833. DOI: 10.1039/C9NJ02291K.
  • Vercelli, B.; Donnini, R.; Ghezzi, F.; Sansonetti, A.; Giovanella, U.; La Ferla, B. Nitrogen-Doped Carbon Quantum Dots Obtained Hydrothermally from Citric Acid and Urea: The Role of the Specific Nitrogen Centers in Their Electrochemical and Optical Responses. Electrochim. Acta 2021, 387, 138557. DOI: 10.1016/j.electacta.2021.138557.
  • Wang, F.; Chen, P.; Feng, Y.; Xie, Z.; Liu, Y.; Su, Y.; Zhang, Q.; Wang, Y.; Yao, K.; Lv, W.; Liu, G. Facile Synthesis of N-Doped Carbon Dots/g-C3N4 Photocatalyst with Enhanced Visible-Light Photocatalytic Activity for the Degradation of Indomethacin. Appl. Catal. 2017, 207, 103–113. DOI: 10.1016/j.apcatb.2017.02.024.
  • Nguyen, H. Y.; Le, X. H.; Dao, N. T.; Pham, N. T.; Vu, T. H. H.; Nguyen, N. H.; Pham, T. N. Microwave-Assisted Synthesis of Graphene Quantum Dots and Nitrogen-Doped Graphene Quantum Dots: Raman Characterization and Their Optical Properties. Adv. Nat. Sci. Nanosci. Nanotechnol. 2019, 10, 025005. DOI: 10.1088/2043-6254/ab1b73.
  • Patial, S.; Sudhaik, A.; Chandel, N.; Ahamad, T.; Raizada, P.; Singh, P.; Chaukura, N.; Selvasembian, R.; Sonu. A Review on Carbon Quantum Dots Modified g-C3N4-Based Photocatalysts and Potential Application in Wastewater Treatment. Appl. Sci. 2022, 12, 11286. DOI: 10.3390/app122111286.
  • Wang, Y.; Wang, P.; Du, Z.; Liu, C.; Shen, C.; Wang, Y. Electromagnetic Interference Shielding Enhancement of Poly (Lactic Acid)-Based Carbonaceous Nanocomposites by Poly (Ethylene Oxide)-Assisted Segregated Structure: A Comparative Study of Carbon Nanotubes and Graphene Nanoplatelets. Adv. Compos. Hybrid Mater. 2022, 5, 209–219. DOI: 10.1007/s42114-021-00320-2.
  • Madhi, A.; Shirkavand Hadavand, B. Bio-Based UV-Curable Urethane Acrylate Graphene Nanocomposites: Synthesis and Properties. SN Appl. Sci. 2020, 2, 724. DOI: 10.1007/s42452-020-2527-4.
  • Wang, P.; Yang, L.; Ling, J.; Song, J.; Song, T.; Chen, X.; Gao, S.; Feng, S.; Ding, Y.; Murugadoss, V.; et al. Frontal Ring-Opening Metathesis Polymerized Polydicyclopentadiene Carbon Nanotube/Graphene Aerogel Composites with Enhanced Electromagnetic Interference Shielding. Adv. Compos. Hybrid Mater. 2022, 5, 2066–2077. DOI: 10.1007/s42114-022-00543-x.
  • Tian, T.; Cheng, Y.; Sun, Z.; Huang, K.; Lei, M.; Tang, H. Carbon Nanotubes Supported Oxygen Reduction Reaction Catalysts: Role of Inner Tubes. Adv. Compos. Hybrid Mater. 2023, 6, 7. DOI: 10.1007/s42114-022-00592-2.
  • Guo, Z.; Li, A.; Sun, Z.; Yan, Z.; Liu, H.; Qian, L. Negative Permittivity Behavior in Microwave Frequency from Cellulose-Derived Carbon Nanofibers. Adv. Compos. Hybrid Mater. 2022, 5, 50–57. DOI: 10.1007/s42114-021-00314-0.
  • Yuan, B.; Wang, Y.; Elnaggar, A. Y.; El Azab, I. H.; Huang, M.; Mahmoud, M. H. H.; El-Bahy, S. M.; Guo, M. Physical Vapor Deposition of Graphitic Carbon Nitride (g-C3N4) Films on Biomass Substrate: Optoelectronic Performance Evaluation and Life Cycle Assessment. Adv. Compos. Hybrid Mater. 2022, 5, 813–822. DOI: 10.1007/s42114-022-00505-3.
  • Chamanehpour, E.; Sayadi, M. H.; Hajiani, M. A Hierarchical Graphitic Carbon Nitride Supported by Metal–Organic Framework and Copper Nanocomposite as a Novel Bifunctional Catalyst with Long-Term Stability for Enhanced Carbon Dioxide Photoreduction under Solar Light Irradiation. Adv. Compos. Hybrid Mater. 2022, 5, 2461–2477. DOI: 10.1007/s42114-022-00459-6.
  • Yuan, B.; Guo, M.; Murugadoss, V.; Song, G.; Guo, Z. Immobilization of Graphitic Carbon Nitride on Wood Surface via Chemical Crosslinking Method for UV Resistance and Self-Cleaning. Adv. Compos. Hybrid Mater. 2021, 4, 286–293. DOI: 10.1007/s42114-021-00235-y.
  • Li, W.; Zhou, L.; Xie, L.; Kang, K.; Xu, J.; Chai, X. N-Fe-Gd co-Doped TiO2/g-C3N4 Nanosheet Hybrid Composites with Superior Photocatalytic Dye Degradation. Adv. Compos. Hybrid Mater. 2022, 5, 481–490. DOI: 10.1007/s42114-021-00326-w.
  • Liang, J.; Li, X.; Zuo, J.; Lin, J.; Liu, Z. Hybrid 0D/2D Heterostructures: In-Situ Growth of 0D g-C3N4 on 2D BiOI for Efficient Photocatalyst. Adv. Compos. Hybrid Mater. 2021, 4, 1122–1136. DOI: 10.1007/s42114-021-00341-x.
  • Lin, C.; Liu, B.; Pu, L.; Sun, Y.; Xue, Y.; Chang, M.; Li, X.; Lu, X.; Chen, R.; Zhang, J. Photocatalytic Oxidation Removal of Fluoride Ion in Wastewater by g-C3N4/TiO2 under Simulated Visible Light. Adv. Compos. Hybrid Mater. 2021, 4, 339–349. DOI: 10.1007/s42114-021-00228-x.
  • Chen, C. Y.; Tseng, C. C. Two-Dimensional Ga2S3/g-C3N4 Heterojunction Composites with Highly Enhanced Photocatalytic Activity and Stability. Adv. Compos. Hybrid Mater. 2023, 6, 20. DOI: 10.1007/s42114-022-00606-z.
  • Luo, X.; Yang, G.; Schubert, D. W. Electrically Conductive Polymer Composite Containing Hybrid Graphene Nanoplatelets and Carbon Nanotubes: Synergistic Effect and Tunable Conductivity Anisotropy. Adv. Compos. Hybrid Mater. 2022, 5, 250–262. DOI: 10.1007/s42114-021-00332-y.
  • Meng, L.; Ushakova, E. V.; Zhou, Z.; Liu, E.; Li, D.; Zhou, D.; Tan, Z.; Qu, S.; Rogach, A. L. Microwave-Assisted in Situ Large Scale Synthesis of a Carbon Dots@g-C3N4 Composite Phosphor for White Light-Emitting Devices. Mater. Chem. Front. 2020, 4, 517–523. DOI: 10.1039/C9QM00659A.
  • Liu, Z.; Li, F.; Luo, Y.; Li, M.; Hu, G.; Pu, X.; Tang, T.; Wen, J.; Li, X.; Li, W. Size Effect of Graphene Quantum Dots on Photoluminescence. Molecules 2021, 26, 3922. DOI: 10.3390/molecules26133922.
  • Zhang, L.; Zhang, J.; Xia, Y.; Xun, M.; Chen, H.; Liu, X.; Yin, X. Metal-Free Carbon Quantum Dots Implant Graphitic Carbon Nitride: Enhanced Photocatalytic Dye Wastewater Purification with Simultaneous Hydrogen Production. Int. J. Mol. Sci. 2020, 21, 1052. DOI: 10.3390/ijms21031052.
  • Bae, G.; Ahn, C.; Jeon, S. Transparent Polymer Nanocomposite with Three-Dimensional ZnO Thin-Shell with High UV-Shielding Performance. Funct. Compos. Struct. 2021, 3, 025007. DOI: 10.1088/2631-6331/ac069c.
  • Madhi, A. Smart Epoxy/Polyurethane/Carbon Quantum Dots Hybrid Coatings: Synthesis and Study of UV-Shielding, Viscoelastic, and anti-Corrosive Properties. Polym-Plas. Technol. Mater. 2023, 62, 403–418. DOI: 10.1080/25740881.2022.2116342.
  • Atchudan, R.; Jebakumar Immanuel Edison, T. N.; Perumal, S.; Lee, Y. R. Indian Gooseberry-Derived Tunable Fluorescent Carbon Dots as a Promise for in Vitro/in Vivo Multicolor Bioimaging and Fluorescent Ink. ACS Omega 2018, 3, 17590–17601. DOI: 10.1021/acsomega.8b02463.
  • Gao, S.; Chen, Y.; Fan, H.; Wei, X.; Hu, C.; Wang, L.; Qu, L. A Green One-Arrow-Two-Hawks Strategy for Nitrogen-Doped Carbon Dots as Fluorescent Ink and Oxygen Reduction Electrocatalysts. J. Mater. Chem. A 2014, 2, 6320–6325. DOI: 10.1039/c3ta15443b.
  • Jothi, V. K.; Ganesan, K.; Natarajan, A.; Rajaram, A. Green Synthesis of Self-Passivated Fluorescent Carbon Dots Derived from Rice Bran for Degradation of Methylene Blue and Fluorescent Ink Applications. J. Fluoresc. 2021, 31, 427–436. DOI: 10.1007/s10895-020-02652-6.
  • Ren, S.; Liu, B.; Wang, M.; Han, G.; Zhao, H.; Zhang, Y. Highly Bright Carbon Quantum Dots for Flexible anti-Counterfeiting. J. Mater. Chem. C 2022, 10, 11338–11346. DOI: 10.1039/D2TC02664C.
  • Madhi, A. Green Fluorescent Unsaturated Polyester/Graphitic Carbon Nitride Quantum Dots Nanocomposites: Preparation and Study of UV-Resistance, Mechanical and Viscoelastic Properties. J. Compos. Mater. 2023, 57, 2437–2450. DOI: 10.1177/00219983231173480.
  • Zhao, P.; Jin, B.; Zhang, Q.; Peng, R. High-Quality Carbon Nitride Quantum Dots on Photoluminescence: Effect of Carbon Sources. Langmuir 2021, 37, 1760–1767. DOI: 10.1021/acs.langmuir.0c02966.
  • Zhan, Y.; Liu, Z.; Liu, Q.; Huang, D.; Wei, Y.; Hu, Y.; Lian, X.; Hu, C. A Facile and One-Pot Synthesis of Fluorescent Graphitic Carbon Nitride Quantum Dots for Bio-Imaging Applications. New J. Chem. 2017, 41, 3930–3938. DOI: 10.1039/C7NJ00058H.
  • Li, L.; Han, Y.; Wang, L.; Jiang, W.; Zhao, H. Dye Plants Derived Carbon Dots for Flexible Secure Printing. Nanomaterials 2022, 12, 3168. DOI: 10.3390/nano12183168.
  • Fiuza, T.; Gomide, G.; Campos, A. F. C.; Messina, F.; Depeyrot, J. On the Colloidal Stability of Nitrogen-Rich Carbon Nanodots Aqueous Dispersions. C – J. Carbon Res. 2019, 5, 74. DOI: 10.3390/c5040074.
  • Zhou, J.; Yang, Y.; Zhang, C. Y. A Low-Temperature Solid-Phase Method to Synthesize Highly Fluorescent Carbon Nitride Dots with Tunable Emission. Chem. Commun. (Camb). 2013, 49, 8605–8607. DOI: 10.1039/C3CC42266F.
  • Madhi, A.; Shirkavand Hadavand, B. UV Protective Bio-Based Epoxy/Carbon Quantum Dots Nanocomposite Coatings: Synthesis and Investigation of Properties. J. Compos. Mater. 2022, 56, 2201–2210. DOI: 10.1177/00219983221092009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.