113
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Composite photocatalyst C3N4/BiVO4 for adsorption/photocatalytic degradation of drugs in water

, &
Pages 1192-1199 | Received 27 Jul 2023, Accepted 11 Sep 2023, Published online: 23 Sep 2023

References

  • Massano, M.; Salomone, A.; Gerace, E.; Alladio, E.; Vincenti, M.; Minella, M. Wastewater Surveillance of 105 pharmaceutical drugs and Metabolites by Means of Ultra-High-Performance Liquid-Chromatography-Tandem High Resolution Mass Spectrometry. J. Chromatogr. A. 2023, 1693, 463896. DOI: 10.1016/j.chroma.2023.463896.
  • Khurana, I.; Shaw, A. K.; Khurana, J. M.; Rai, P. K. Comparative Study for Removal of Nitro-Heterocyclic Explosives Using Magnetic Graphene Nanocomposites. Fulleren. Nanotube Carbon Nanostruct. 2020, 28, 671–679. DOI: 10.1080/1536383X.2020.1743273.
  • Santana-Viera, S.; Lara-Martín, P. A.; González-Mazo, E. High Resolution Mass Spectrometry (HRMS) Determination of Drugs in Wastewater and Wastewater Based Epidemiology in Cadiz Bay (Spain). J. Environ. Manage. 2023, 341, 118000. DOI: 10.1016/j.jenvman.2023.118000.
  • Hashmi, A.; Singh, A. K.; Khan, A. A. P.; Asiri, A. M. Synthesis and Characterization of 2D Structure of Graphene Oxide by Using Phyllanthus Emblica: Its Photocatalytic Activity on Cationic Dyes. Fulleren. Nanotube Carbon Nanostruct. 2022, 30, 409–418. DOI: 10.1080/1536383X.2021.1946039.
  • Park, C.-Y.; Choi, J.-G.; Ghosh, T.; Meng, Z.-D.; Zhu, L.; Oh, W.-C. Preparation of ZnS-Graphene/TiO2 Composites Designed for Their High Photonic Effect and Photocatalytic Activity under Visible Light. Fulleren. Nanotube Carbon Nanostruct. 2014, 22, 630–642. DOI: 10.1080/1536383X.2012.717556.
  • Al-Keisy, A.; Mahdi, R.; Ahmed, D.; Al-Attafi, K.; Abd. Majid, W. H. Enhanced Photoreduction Activity in BiOI1-xFx Nanosheet for Efficient Removal of Pollutants from Aqueous Solution. ChemistrySelect. 2020, 5, 9758–9764. DOI: 10.1002/slct.202000805.
  • Abid, H. N.; Al-Keisy, A.; Ahmed, D. S.; Salih, A. T.; Khammas, A. pH Dependent Synthesis and Characterization of Bismuth Molybdate Nanostructure for Photocatalysis Degradation of Organic Pollutants. Environ. Sci. Pollut. Res. Int. 2022, 29, 37633–37643. DOI: 10.1007/s11356-021-18064-3.
  • Mahdi, R.; Mohammed, E. H.; Al-Keisy, A.; Alsultan, M.; Majid, W. H. A. Tailoring the Morphology of BiNbO4 of Polymorph in 2D Nanosheets for Enhancement of Photocatalytic Activity in the Visible Range. Physica E. 2022, 136, 115009. DOI: 10.1016/j.physe.2021.115009.
  • Sacco, O.; Vaiano, V.; Han, C.; Sannino, D.; Dionysiou, D. D. Photocatalytic Removal of Atrazine Using N-Doped TiO2 Supported on Phosphors. Appl. Catal. B. 2015, 164, 462–474. DOI: 10.1016/j.apcatb.2014.09.062.
  • Muhson Naji, A.; Yahiya Mohammed, I.; Mohammed, S. H.; Mohammed, M. K. A.; Ahmed, D. S.; Jabir, M. S.; Mahdi Rheima, A. Photocatalytic Degradation of Methylene Blue Dye Using F Doped ZnO/Polyvinyl Alcohol Nanocomposites. Mater. Lett. 2022, 322, 132473. DOI: 10.1016/j.matlet.2022.132473.
  • Sakthivel, P.; Anandha Babu, G.; Karuppiah, M.; Asaithambi, S.; Balaji, V.; Pandian, M. S.; Ramasamy, P.; Mohammed, M. K. A.; Navaneethan, N.; Ravi, G. Electrochemical Energy Storage Applications of Carbon Nanotube Supported Heterogeneous Metal Sulfide Electrodes. Ceram. Int. 2022, 48, 6157–6165. DOI: 10.1016/j.ceramint.2021.11.155.
  • Nagaraj, G.; Mohammed, M. K. A.; Abdulzahraa, H. G.; Sasikumar, P.; Karthikeyan, S.; Tamilarasu, S. Effects of the Surface of Solar-Light Photocatalytic Activity of Ag-Doped TiO2 Nanohybrid Material Prepared with a Novel Approach. Appl. Phys. A. 2021, 127, 269. DOI: 10.1007/s00339-021-04427-7.
  • Guo, J.; Chen, T.; Zhou, X.; Zheng, T.; Xia, W.; Zhong, C.; Liu, Y. Preparation and Pb (II) Adsorption in Aqueous of 2D/2D g-C3N4/MnO2 Composite. Appl. Organom Chem. 2019, 33, e5119. DOI: 10.1002/aoc.5119.
  • Fu, J.; Yu, J.; Jiang, C.; Cheng, B. g-C3N4-Based Heterostructured Photocatalysts. Adv. Energy Mater. 2018, 8, 1701503. DOI: 10.1002/aenm.201701503.
  • Wen, J.; Xie, J.; Chen, X.; Li, X. A Review on g-C3N4-Based Photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123. DOI: 10.1016/j.apsusc.2016.07.030.
  • Al-Attar, H. M.; Hussein, H. T.; Zamel, R. S.; Addie, A. J.; Mohammed, M. K. A. Methylene Blue Degradation Using ZnO:CuO:Al2O3 Nanocomposite Synthesized by Liquid Laser Ablation. Opt. Quant. Electron. 2023, 55, 309. DOI: 10.1007/s11082-023-04597-z.
  • Liang, L.; Shi, L.; Wang, F.; Wang, H.; Yan, P.; Cong, Y.; Yao, L.; Yang, Z.; Qi, W. g-C3N4 Nano-Fragments as Highly Efficient Hydrogen Evolution Photocatalysts: Boosting Effect of Nitrogen Vacancy. Appl. Catal. A. 2020, 599, 117618. DOI: 10.1016/j.apcata.2020.117618.
  • Shi, L.; Liu, G.; Zhang, Y.; Yang, Z. Na, O co-Doping and Cyano Groups Synergistically Adjust the Band Structure of g-C3N4 for Improving Photocatalytic Oxygen Evolution. Mater. Res. Bull. 2023, 167, 112423. DOI: 10.1016/j.materresbull.2023.112423.
  • Liu, X.; Ma, R.; Zhuang, L.; Hu, B.; Chen, J.; Liu, X.; Wang, X. Recent Developments of Doped g-C3N4 Photocatalysts for the Degradation of Organic Pollutants. Critic. Rev. Environ. Sci. Technol. 2021, 51, 751–790. DOI: 10.1080/10643389.2020.1734433.
  • Zhu, Q.; Xu, Z.; Qiu, B.; Xing, M.; Zhang, J. Emerging Cocatalysts on g-C3N4 for Photocatalytic Hydrogen Evolution. Small 2021, 17, e2101070. DOI: 10.1002/smll.202101070.
  • Wang, L.; Si, W.; Tong, Y.; Hou, F.; Pergolesi, D.; Hou, J.; Lippert, T.; Dou, S. X.; Liang, J. Graphitic Carbon Nitride (g-C3N4)-Based Nanosized Heteroarrays: Promising Materials for Photoelectrochemical Water Splitting. Carbon Energy 2020, 2, 223–250. DOI: 10.1002/cey2.48.
  • Liu, W.; Song, C.; Kou, M.; Wang, Y.; Deng, Y.; Shimada, T.; Ye, L. Fabrication of Ultra-Thin g-C3N4 Nanoplates for Efficient Visible-Light Photocatalytic H2O2 Production via Two-Electron Oxygen Reduction. Chem. Eng. J. 2021, 425, 130615. DOI: 10.1016/j.cej.2021.130615.
  • Ng, C. H.; Teo, S. H.; Mansir, N.; Islam, A.; Joseph, C. G.; Hayase, S.; Taufiq-Yap, Y. H. Recent Advancements and Opportunities of Decorated Graphitic Carbon Nitride toward Solar Fuel Production and beyond. Sustain. Energy Fuel. 2021, 5, 4457–4511. DOI: 10.1039/D1SE00670C.
  • Fan, J.; Qin, H.; Jiang, S. Mn-Doped g-C3N4 Composite to Activate Peroxymonosulfate for Acetaminophen Degradation: The Role of Superoxide Anion and Singlet Oxygen. Chem. Eng. J. 2019, 359, 723–732. DOI: 10.1016/j.cej.2018.11.165.
  • Papailias, I.; Todorova, N.; Giannakopoulou, T.; Ioannidis, N.; Boukos, N.; Athanasekou, C. P.; Dimotikali, D.; Trapalis, C. Chemical vs Thermal Exfoliation of g-C3N4 for NOx Removal under Visible Light Irradiation. Appl. Catal. B. 2018, 239, 16–26. DOI: 10.1016/j.apcatb.2018.07.078.
  • Faris, A. H.; Hamid, K. J.; Naji, A. M.; Mohammed, M. K. A.; Nief, O. A.; Jabir, M. S. Novel Mo-Doped WO3/ZnO Nanocomposites Loaded with Polyvinyl Alcohol towards Efficient Visible-Light-Driven Photodegradation of Methyl Orange. Mater. Lett. 2023, 334, 133746. DOI: 10.1016/j.matlet.2022.133746.
  • Faeq, R. I.; Jaafar, S. S.; Naji, A. M.; Mohammed, M. K. A.; Nief, O. A. Increasing the Photocatalytic Degradation Rate of a rGO/PVA Nanocomposite Decorated with ZnO Nanoparticles. New J. Chem. 2023, 47, 13661–13670. DOI: 10.1039/D3NJ01521A.
  • Van, K. N.; Huu, H. T.; Nguyen Thi, V. N.; Le Thi, T. L.; Truong, D. H.; Truong, T. T.; Dao, N. N.; Vo, V.; Tran, D. L.; Vasseghian, Y. Facile Construction of S-Scheme SnO2/g-C3N4 Photocatalyst for Improved Photoactivity. Chemosphere. 2022, 289, 133120. DOI: 10.1016/j.chemosphere.2021.133120.
  • Chu, K.; Liu, Y-p.; Li, Y-b.; Guo, Y-l.; Tian, Y. Two-Dimensional (2D)/2D Interface Engineering of a MoS2/C3N4 Heterostructure for Promoted Electrocatalytic Nitrogen Fixation. ACS Appl Mater Interfaces. 2020, 12, 7081–7090. DOI: 10.1021/acsami.9b18263.
  • Zhao, Y.; Shi, H.; Yang, D.; Fan, J.; Hu, X.; Liu, E. Fabrication of a Sb2MoO6/g-C3N4 Photocatalyst for Enhanced RhB Degradation and H2 Generation. J. Phys. Chem. C. 2020, 124, 13771–13778. DOI: 10.1021/acs.jpcc.0c03209.
  • Liu, J.; Wang, H.; Wang, S.; Yan, H. Hydrothermal Preparation of BiVO4 Powders. Mater. Sci. Eng: B. 2003, 104, 36–39. DOI: 10.1016/S0921-5107(03)00264-2.
  • A, M.; J, M.; Ashokkumar, M.; Arunachalam, P. A Review on BiVO4 Photocatalyst: Activity Enhancement Methods for Solar Photocatalytic Applications. Appl. Catal. A. 2018, 555, 47–74. DOI: 10.1016/j.apcata.2018.02.010.
  • Yu, J.; Kudo, A. Effects of Structural Variation on the Photocatalytic Performance of Hydrothermally Synthesized BiVO4. Adv. Funct. Mater. 2006, 16, 2163–2169. DOI: 10.1002/adfm.200500799.
  • Regmi, C.; Kshetri, Y. K.; Kim, T.-H.; Pandey, R. P.; Lee, S. W. Visible-Light-Induced Fe-Doped BiVO4 Photocatalyst for Contaminated Water Treatment. Mol. Catalysis. 2017, 432, 220–231. DOI: 10.1016/j.mcat.2017.02.004.
  • Geng, Y.; Zhang, P.; Li, N.; Sun, Z. Synthesis of Co Doped BiVO4 with Enhanced Visible-Light Photocatalytic Activities. J. Alloys Compd. 2015, 651, 744–748. DOI: 10.1016/j.jallcom.2015.08.123.
  • Cao, S.-W.; Yin, Z.; Barber, J.; Boey, F. Y. C.; Loo, S. C. J.; Xue, C. Preparation of Au-BiVO4 Heterogeneous Nanostructures as Highly Efficient Visible-Light Photocatalysts. ACS Appl Mater Interfaces 2012, 4, 418–423. DOI: 10.1021/am201481b.
  • Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction Photocatalysts. Adv. Mater. 2017, 29, 1601694. DOI: 10.1002/adma.201601694.
  • Gong, E.; Ali, S.; Hiragond, C. B.; Kim, H. S.; Powar, N. S.; Kim, D.; Kim, H.; In, S.-I. Solar Fuels: Research and Development Strategies to Accelerate Photocatalytic CO2 Conversion into Hydrocarbon Fuels. Energy Environ. Sci. 2022, 15, 880–937. DOI: 10.1039/D1EE02714J.
  • Primo, A.; Corma, A.; García, H. Titania Supported Gold Nanoparticles as Photocatalyst. Phys. Chem. Chem. Phys. 2011, 13, 886–910. DOI: 10.1039/C0CP00917B.
  • Safaei, J.; Ullah, H.; Mohamed, N. A.; Mohamad Noh, M. F.; Soh, M. F.; Tahir, A. A.; Ahmad Ludin, N.; Ibrahim, M. A.; Wan Isahak, W. N. R.; Mat Teridi, M. A. Enhanced Photoelectrochemical Performance of Z-Scheme g-C3N4/BiVO4 Photocatalyst. Appl. Catal. B. 2018, 234, 296–310. DOI: 10.1016/j.apcatb.2018.04.056.
  • Ou, M.; Wan, S.; Zhong, Q.; Zhang, S.; Song, Y.; Guo, L.; Cai, W.; Xu, Y. Hierarchical Z-Scheme Photocatalyst of g-C3N4@Ag/BiVO4 (040) with Enhanced Visible-Light-Induced Photocatalytic Oxidation Performance. Appl. Catal. B. 2018, 221, 97–107. DOI: 10.1016/j.apcatb.2017.09.005.
  • Tian, N.; Huang, H.; He, Y.; Guo, Y.; Zhang, T.; Zhang, Y. Mediator-Free Direct Z-Scheme Photocatalytic System: G -C3N4/BiVO4 Organic–Inorganic Hybrid Photocatalyst with Highly Efficient Visible-Light-Induced Photocatalytic Activity. Dalton. Trans. 2015, 44, 4297–4307. DOI: 10.1039/C4DT03905J.
  • Jiang, T.; Nan, F.; Zhou, J.; Zheng, F.; Weng, Y.; Cai, T.-Y.; Ju, S.; Xu, B.; Fang, L. Enhanced Photocatalytic and Photoelectrochemical Performance of g-C3N4/BiVO4 Heterojunction: A Combined Experimental and Theoretical Study. AIP Adv. 2019, 9, 055225. DOI: 10.1063/1.5090410.
  • Actis, A.; Sacchi, F.; Takidis, C.; Paganini, M. C.; Cerrato, E. Changes in Structural, Morphological and Optical Features of Differently Synthetized C3N4-ZnO Heterostructures: An Experimental Approach. Inorganics. 2022, 10, 119. DOI: 10.3390/inorganics10080119.
  • Zhang, X.; Shi, L.; Zhang, Y. Preparation of Organic-Inorganic PDI/BiO2-x Photocatalyst with Boosted Photocatalytic Performance. J. Taiwan Inst. Chem. Eng. 2022, 132, 104111. DOI: 10.1016/j.jtice.2021.10.011.
  • Yang, M.; Wang, Z.; Yao, L.; Shi, L. Construction of 2D/2D Ti3C2/Bi12O17Cl2: Effective Charge Separation and Improved Photocatalytic Activity. Mater. Res. Bull. 2023, 159, 112110. DOI: 10.1016/j.materresbull.2022.112110.
  • Liang, X.; Wang, G.; Huo, T.; Dong, X.; Wang, G.; Ma, H.; Liang, H.; Zhang, X. Band Structure Modification of g-C3N4 for Efficient Heterojunction Construction and Enhanced Photocatalytic Capability under Visible Light Irradiation. Catal. Commun. 2019, 123, 44–48. DOI: 10.1016/j.catcom.2019.01.003.
  • Shen, Y.; Guo, X.; Bo, X.; Wang, Y.; Guo, X.; Xie, M.; Guo, X. Effect of Template-Induced Surface Species on Electronic Structure and Photocatalytic Activity of g-C3N4. Appl. Surf. Sci. 2017, 396, 933–938. DOI: 10.1016/j.apsusc.2016.11.064.
  • Shi, L.; Ma, J.; Yao, L.; Cui, L.; Qi, W. Enhanced Photocatalytic Activity of Bi12O17Cl2 Nano-Sheets via Surface Modification of Carbon Nanotubes as Electron Carriers. J Colloid Interface Sci 2018, 519, 1–10. DOI: 10.1016/j.jcis.2018.02.056.
  • Zhao, Y.; Liu, T.; Si, W.; Cui, L.; Shi, L. Synthesis and Photocatalytic Property of a Novel Ag2S/Bi12O17Cl2 Photocatalyst. Opt. Mater. 2023, 137, 113557. DOI: 10.1016/j.optmat.2023.113557.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.