32
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Modification of fullerene with amino acids as a method for obtaining biocompatible materials with a protective effect

, , , , , , , , , , & show all
Pages 631-639 | Received 01 Nov 2023, Accepted 30 Nov 2023, Published online: 09 Apr 2024

References

  • Sharoyko, V. V.; Ageev, S. V.; Podolsky, N. E.; Petrov, A. V.; Litasova, E. V.; Vlasov, T. D.; Vasina, L. V.; Murin, I. V.; Piotrovskiy, L. B.; Semenov, K. N. Biologically Active Water-Soluble Fullerene Adducts: Das Glasperlenspiel (by H. Hesse)? J. Mol. Liq. 2021, 323, 114990. DOI: 10.1016/j.molliq.2020.114990.
  • Pochkaeva, E. I.; Podolsky, N. E.; Zakusilo, D. N.; Petrov, A. V.; Charykov, N. A.; Vlasov, T. D.; Penkova, A. V.; Vasina, L. V.; Murin, I. V.; Sharoyko, V. V.; et al. Fullerene Derivatives with Amino Acids, Peptides and Proteins: From Synthesis to Biomedical Application. Prog. Solid State Chem. 2020, 57, 100255. DOI: 10.1016/j.progsolidstchem.2019.100255.
  • Eletskii, A. V.; Smirnov, B. M. Fullerenes and Carbon Structures. Phys.-Usp 1995, 38, 935–964. DOI: 10.1070/PU1995v038n09ABEH000103.
  • Latypov, Z. Z.; Gall, L. N. Fullerens and Carbon Nanoclusters. Sci. Instrum. 2005, 15, 82–87.
  • Semenov, K. N.; Charykov, N. A.; Postnov, V. N.; Sharoyko, V. V.; Vorotyntsev, I. V.; Galagudza, M. M.; Murin, I. V. Fullerenols: Physicochemical Properties and Applications. Prog. Solid State Chem. 2016, 44, 59–74. DOI: 10.1016/j.progsolidstchem.2016.04.002.
  • Semenov, K. N.; Andrusenko, E. V.; Charykov, N. A.; Litasova, E. V.; Panova, G. G.; Penkova, A. V.; Murin, I. V.; Piotrovskiy, L. B. Carboxylated Fullerenes: Physico-Chemical Properties and Potential Applications. Prog. Solid State Chem. 2017, 47-48, 19–36. DOI: 10.1016/j.progsolidstchem.2017.09.001.
  • Bezmel’nitsyn, V. N.; Eletskii, A. V.; Okun’, M. V. Fullerenes in Solutions. Phys.-Usp 1998, 41, 1091–1114. DOI: 10.1070/PU1998v041n11ABEH000502.
  • Bagchi, D.; Bagchi, M.; Moriyama, H.; Shahidi, F. Biomedical Applications of Nanomaterials: An Overview. In Bio-Nanotechnology: A Revolution in Food, Biomedical and Health Sciences; John Wiley & Sons, Ltd., 2013; pp 1–32. DOI: 10.1002/9781118451915.
  • Matsubayashi, K.; Kokubo, K.; Tategaki, H.; Kawahama, S.; Oshima, T. One‐Step Synthesis of Water‐Soluble Fullerenols Bearing Nitrogen‐Containing Substituents. Fullerenes Nanotubes Carbon Nanostruct. 2009, 17, 440–456. DOI: 10.1080/01490450903039263.
  • Burley, G. A.; Keller, P. A.; Pyne, S. G. Fullerene Amino Acids and Related Derivatives. Fullere. Sci. Technol. 1999, 7, 973–1001. DOI: 10.1080/10641229909350301.
  • Basiuk, V. A.; González-Luciano, E. Noncovalent Interactions of Amino Acids with Fullerene C60: A Dispersion-Corrected DFT Study. Fullere. Nanotubes Carbon Nanostruct. 2016, 24, 371–379. DOI: 10.1080/1536383X.2016.1163687.
  • Troshin, P. A.; Lyubovskaya, R. N. Synthesis of Several Pyrrolidinofullerenes Containing Structural Units of Natural Amino Acids. Fullere. Nanotubes Carbon Nanostruct 2005, 13, 345–351. DOI: 10.1080/15363830500237226.
  • Kinzyabaeva, Z. S.; Sabirov, D. S. New Sonochemical Reactions of the C60 Fullerene with Amino Alcohols Yielding Morpholine–C60 Adducts. Fullere. Nanotubes Carbon Nanostruct 2022, 30, 1134–1141. DOI: 10.1080/1536383X.2022.2078314.
  • Yang, X. L.; Fan, C. H.; Zhu, H. S. Photo-Induced Cytotoxicity of Malonic Acid [C60]Fullerene Derivatives and Its Mechanism. Toxicol In Vitro 2002, 16, 41–46. DOI: 10.1016/S0887-2333(01)00102-3.
  • Medzhidova, M. G.; Abdullaeva, M.; V; Fedorova, N. E.; Romanova, V. S.; Kushch, A. A. In Vitro Antiviral Activity of Fullerene Amino Acid Derivatives in Cytomegalovirus Infection. Antibiot. Khimioter. 2004, 49, 13–20.
  • Lin, Y. L.; Lei, H. Y.; Wen, Y. Y.; Luh, T. Y.; Chou, C. K.; Liu, H. S. Light-Independent Inactivation of Dengue-2 Virus by Carboxyfullerene C3 Isomer. Virology 2000, 275, 258–262. DOI: 10.1006/VIRO.2000.0490.
  • Sijbesma, R.; Srdanov, G.; Wudl, F.; Castoro, J. A.; Wilkins, C.; Friedman, S. H.; DeCamp, D. L.; Kenyon, G. L. Synthesis of a Fullerene Derivative for the Inhibition of HIV Enzymes. J. Am. Chem. Soc. 1993, 115, 6510–6512. DOI: 10.1021/ja00068a006.
  • Tsao, N.; Luh, T.-Y.; Chou, C.-K.; Wu, J.-J.; Lin, Y.-S.; Lei, H.-Y. Inhibition of Group a Streptococcus Infection by Carboxyfullerene. Antimicrob. Agents Chemother. 2001, 45, 1788–1793. DOI: 10.1128/AAC.45.6.1788-1793.2001.
  • Wang, I. C.; Tai, L. A.; Lee, D. D.; Kanakamma, P. P.; Shen, C. K.-F.; Luh, T.-Y.; Cheng, C. H.; Hwang,K. C. C60 and Water-Soluble Fullerene Derivatives as Antioxidants against Radical-Initiated Lipid Peroxidation. J. Med. Chem. 1999, 42, 4614–4620. DOI: 10.1021/jm990144s.
  • Dugan, L. L.; Turetsky, D. M.; Du, C.; Lobner, D.; Wheeler, M.; Almli, C. R.; Shen, C. K.; Luh, T. Y.; Choi, D. W.; Lin, T. S. Carboxyfullerenes as Neuroprotective Agents. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 9434–9439. DOI: 10.1073/pnas.94.17.9434.
  • Dugan, L. L.; Lovett, E. G.; Quick, K. L.; Lotharius, J.; Lin, T. T.; O'Malley, K. L. Fullerene-Based Antioxidants and Neurodegenerative Disorders. Parkinsonism Relat. Disord. 2001, 7, 243–246. DOI: 10.1016/s1353-8020(00)00064-x.
  • Käsermann, F.; Kempf, C. Buckminsterfullerene and Photodynamic Inactivation of Viruses. Rev. Med. Virol. 1998, 8, 143–151. DOI: 10.1002/%28SICI%291099-1654%28199807/09%298%3A3<143%3A%3AAID-RMV214>3.0.CO%3B2-B.
  • Vileno, B.; Sienkiewicz, A.; Lekka, M.; Kulik, A. J.; Forró, L. In Vitro Assay of Singlet Oxygen Generation in the Presence of Water-Soluble Derivatives of C60. Carbon N. Y. 2004, 42, 1195–1198. DOI: 10.1016/j.carbon.2003.12.042.
  • Andreev, I. M.; Romanova, V. S.; Petrukhina, A. O.; Andreev, S. M. Amino-Acid Derivatives of Fullerene C60 Behave as Lipophilic Ions Penetrating through Biomembranes. Phys. Solid State 2002, 44, 683–685. DOI: 10.1134/1.1470559.
  • Piotrovskii, L. B. Fullerenes in the Drug Design. Nanotechnol. Russia 2009, 4, 541–555. DOI: 10.1134/S1995078009090018.
  • Kotelnikova, R. A.; Kotelnikov, A. I.; Bogdanov, G. N.; Romanova, V. S.; Kuleshova, E. F.; Parnes, Z. N.; Vol’pin, M. E. Membranotropic Properties of the Water Soluble Amino Acid and Peptide Derivatives of Fullerene C60. FEBS Lett. 1996, 389, 111–114. DOI: 10.1016/0014-5793(96)00537-6.
  • Andreev, I.; Petrukhina, A.; Garmanova, A.; Babakhin, A.; Andreev, S.; Romanova, V.; Troshin, P.; Troshina, O.; DuBuske, L. Penetration of Fullerene C 60 Derivatives through Biological Membranes. Fullere. Nanotubes Carbon Nanostruct. 2008, 16, 89–102. DOI: 10.1080/15363830701885831.
  • Sharoyko, V. V.; Shemchuk, O. S.; Meshcheriakov, A. A.; Vasina, L. V.; Iamalova, N. R.; Luttsev, M. D.; Ivanova, D. A.; Petrov, A. V.; Maystrenko, D. N.; Molchanov, O. E.; Semenov, K. N. Biocompatibility, Antioxidant Activity and Collagen Photoprotection Properties of C60 Fullerene Adduct with L-Methionine. Nanomedicine 2022, 40, 102500. DOI: 10.1016/J.NANO.2021.102500.
  • Meshcheriakov, A. A.; Iurev, G. O.; Luttsev, M. D.; Podolsky, N. E.; Ageev, S. V.; Petrov, A. V.; Vasina, L. V.; Solovtsova, I. L.; Sharoyko, V. V.; Murin, I. V.; Semenov, K. N. Physicochemical Properties, Biological Activity and Biocompatibility of Water-Soluble C60-Hyp Adduct. Colloids Surf B Biointerfaces 2020, 196, 111338. DOI: 10.1016/j.colsurfb.2020.111338.
  • Pochkaeva, E. I.; Meshcheriakov, A. A.; Ageev, S. V.; Podolsky, N. E.; Petrov, A. V.; Charykov, N. A.; Vasina, L. V.; Nikolaeva, O. Y.; Gaponenko, IN.; Sharoyko, V. V.; et al. Polythermal Density and Viscosity, Nanoparticle Size Distribution, Binding with Human Serum Albumin and Radical Scavenging Activity of the C60-l-Arginine (C60(C6H13N4O2)8H8) Aqueous Solutions. J. Mol. Liq. 2020, 297, 111915. DOI: 10.1016/j.molliq.2019.111915.
  • Semenov, K. N.; Meshcheriakov, A. A.; Charykov, N. A.; Dmitrenko, M. E.; Keskinov, V. A.; Murin, I. V.; Panova, G. G.; Sharoyko, V. V.; Kanash, E. V.; Khomyakov, Y. V. Physico-Chemical and Biological Properties of C60-l-Hydroxyproline Water Solutions. RSC Adv. 2017, 7, 15189–15200. DOI: 10.1039/C6RA26621E.
  • Sharoyko, V. V.; Ageev, S. V.; Meshcheriakov, A. A.; Podolsky, N. E.; Vallejo, J. P.; Lugo, L.; Rakipov, I. T.; Petrov, A. V.; Ivanova, A. V.; Charykov, N. A.; Semenov, K. N. Physicochemical Investigation of Water-Soluble C60(C2NH4O2)4H4 (C60-Gly) Adduct. J. Mol. Liq. 2021, 344, 117658. DOI: 10.1016/j.molliq.2021.117658.
  • Mikolaichuk, O. V.; Popova, E. A.; Protas, A. V.; Rakipov, I. T.; Nerukh, D. A.; Petrov, A. V.; Charykov, N. A.; Ageev, S. V.; Tochilnikov, G. V.; Zmitrichenko, I. G.; et al. A Cytostatic Drug from the Class of Triazine Derivatives: Its Properties in Aqueous Solutions, Cytotoxicity, and Therapeutic Activity. J. Mol. Liq. 2022, 356, 119043. DOI: 10.1016/j.molliq.2022.119043.
  • Abdelhalim, A. O.; Sharoyko, V. V.; Meshcheriakov, A. A.; Luttsev, M. D.; Potanin, A. A.; Iamalova, N. R.; Zakharov, E. E.; Ageev, S. V.; Petrov, A. V.; Vasina, L. V.; et al. Synthesis, Characterisation and Biocompatibility of Graphene–L-Methionine Nanomaterial. J. Mol. Liq. 2020, 314, 113605. DOI: 10.1016/j.molliq.2020.113605.
  • Gaponenko, IN.; Ageev, S. V.; Iurev, G. O.; Shemchuk, O. S.; Meshcheriakov, A. A.; Petrov, A. V.; Solovtsova, I. L.; Vasina, L. V.; Tennikova, T. B.; Murin, I. V.; et al. Biological Evaluation and Molecular Dynamics Simulation of Water-Soluble Fullerene Derivative C60[C(COOH)2]3. Toxicol. in Vitro 2020, 62, 104683. DOI: 10.1016/j.tiv.2019.104683.
  • Mikolaichuk, O. V.; Sharoyko, V. V.; Popova, E. A.; Protas, A. V.; Fonin, A. V.; Vasina, L. V.; Anufrikov, Y. A.; Luttsev, M. D.; Nashchekina, I. A.; Malkova, A. M.; et al. Biocompatibility and Bioactivity Study of a Cytostatic Drug Belonging to the Group of Alkylating Agents of the Triazine Derivative Class. J. Mol. Liq. 2021, 343, 117630. DOI: 10.1016/j.molliq.2021.117630.
  • Semenov, K. N.; Charykov, N. A.; Murin, I. V.; Pukharenko, Y. V. Physico-Chemical Properties of the C60-Tris-Malonic Derivative Water Solutions. J. Mol. Liq. 2015, 201, 50–58. DOI: 10.1016/j.molliq.2014.11.019.
  • Semenov, K. N.; Kurilenko, A. V.; Charykov, N. A.; Keskinov, V. A.; Vorob’ev, A. L.; Shaimardanov, Z. K.; Kulenova, N. A.; Onalbaeva, Z. S.; Letenko, D. G. Solubility, Thermal Analysis, and Association of the Bis-Adducts of Light C60 Fullerene and Amino Acids Lysine, Threonine, and Hydroxyproline in Aqueous Solutions. Russ. J. Phys. Chem. 2019, 93, 1258–1265. DOI: 10.1134/S0036024419070240.
  • Mikolaichuk, O. V.; Popova, E.; Protas, A. V.; Shemchuk, O. S.; Vasina, L. V.; Pavlyukova, Y. N.; Potanin, A. A.; Molchanov, O.; Maistrenko, D. N.; Semenov, K. N.; et al. Study of Biocompatibility, Cytotoxic Activity in Vitro of a Tetrazole-Containing Derivative of 2-Amino-4,6-Di(Aziridin-1-Yl)-1,3,5-Triazine. Biochem. Biophys. Res. Commun. 2022, 629, 176–182. DOI: 10.1016/J.BBRC.2022.08.072.
  • Sharoyko, V. V.; Mikolaichuk, O. V.; Shemchuk, O. S.; Abdelhalim, A. O. E.; Potanin, A. A.; Luttsev, M. D.; Dadadzhanov, D. R.; Vartanyan, T. A.; Petrov, A. V.; Shasherina, A. Y.; et al. Novel Non-Covalent Conjugate Based on Graphene Oxide and Alkylating Agent from 1,3,5-Triazine Class. J. Mol. Liq. 2023, 372, 121203. DOI: 10.1016/j.molliq.2023.121203.
  • Galebskaya, L. V.; Solovtsova, I. L.; Miroshnikova, E. B.; Mikhailova, I. A.; Sushkin, M. E.; Razumny, A. V.; Babina, A. V.; Fomina, V. A. The Importance of a Photosensitizer Bleaching Registration for the Evaluation of Mechanism of Preparation Action on the Photo-Induced Hemolysis. BMP 2017, 6, 33–38. DOI: 10.24931/2413-9432-2017-6-3-33-38.
  • Jafvert, C. T.; Kulkarni, P. P. Buckminsterfullerene’s (C 60) Octanol − Water Partition Coefficient (K ow) and Aqueous Solubility. Environ. Sci. Technol. 2008, 42, 5945–5950. DOI: 10.1021/es702809a.
  • Sharoyko, V. V.; Berdichevsky, G. M.; Vasina, L. V.; Shemchuk, O. S.; Maystrenko, D. N.; Molchanov, O. E.; Abdelhalim, A. O. E.; Nashchekin, A. V.; Nerukh, D. A.; Tochilnikov, G. V.; et al. Covalent Conjugates Based on Nanodiamonds with Doxorubicin and a Cytostatic Drug from the Group of 1,3,5-Triazines: Synthesis, Biocompatibility and Biological Activity. Biochim. Biophys. Acta Gen. Subj. 2023, 1867, 130384. DOI: 10.1016/j.bbagen.2023.130384.
  • Panova, G. G.; Serebryakov, E. B.; Semenov, K. N.; Charykov, N. A.; Shemchuk, O. S.; Andrusenko, E. V.; Kanash, E. V.; Khomyakov, Y. V.; Shpanev, A. M.; Dulneva, L. L.; et al. Bioactivity Study of the C60-L-Threonine Derivative for Potential Application in Agriculture. J. Nanomater. 2019, 2019, 1–13. DOI: 10.1155/2019/2306518.
  • Abdelhalim, A. O. E.; Sharoyko, V. V.; Meshcheriakov, A. A.; Martynova, S. D.; Ageev, S. V.; Iurev, G. O.; Al Mulla, H.; Petrov, A. V.; Solovtsova, I. L.; Vasina, L. V.; et al. Reduction and Functionalization of Graphene Oxide with L-Cysteine: Synthesis, Characterization and Biocompatibility. Nanomedicine 2020, 29, 102284. DOI: 10.1016/j.nano.2020.102284.
  • Wu, B.-Y.; Gao, L.-H.; Duan, Z.-M.; Wang, K.-Z. Syntheses and DNA-Binding Studies of Two Ruthenium(II) Complexes Containing One Ancillary Ligand of Bpy or Phen: [Ru(Bpy)(Pp[2,3]p)2](ClO4)2 and [Ru(Phen)(Pp[2,3]p)2](ClO4)2. J Inorg Biochem. 2005, 99, 1685–1691. DOI: 10.1016/j.jinorgbio.2005.05.012.
  • Vedenov, A. A.; Dykhne, A. M.; Frank-Kamenetskiĭ, M. D. The Helix-Coil Transition in Dna. Sov. Phys. Usp 1972, 14, 715–736. DOI: 10.1070/PU1972v014n06ABEH004752.
  • Mikolaichuk, O. V.; Protas, A. V.; Popova, E. A.; Lutsev, M. D.; Smirnov, E. Y.; Golotin, V. A.; Ostrovskii, V. A.; Kornyakov, I. V.; Semenov, K. N.; Sharoyko, V. V.; et al. Synthesis and Study of Some Properties of New Tetrazole-Containing Derivatives of Morpholin-4-Yl-1,3,5-Triazine and 4-Methylpiperidin-1-Yl-1,3,5-Triazine. Russ. J. Gen. Chem. 2023, 93, 1050–1063. DOI: 10.1134/S1070363223050055.
  • Colis, L. C.; Woo, C. M.; Hegan, D. C.; Li, Z.; Glazer, P. M.; Herzon, S. B. The Cytotoxicity of (−)-Lomaiviticin a Arises from Induction of Double-Strand Breaks in DNA. Nat. Chem. 2014, 6, 504–510. DOI: 10.1038/nchem.1944.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.