32
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Stiffening of double-shelled fullerene molecules under uniaxial strains

, , , , &
Pages 799-805 | Received 08 Nov 2023, Accepted 07 Mar 2024, Published online: 21 Mar 2024

References

  • Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. DOI: 10.1038/318162a0.
  • Georgakilas, V.; Perman, J. A.; Tucek, J.; Zboril, R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem. Rev. 2015, 115, 4744–4822. DOI: 10.1021/cr500304f.
  • Yao, Y.; Wang, X.; Guo, J.; Yang, X.; Xu, B. Tribological Property of Onion-like Fullerenes as Lubricant Additive. Mater. Lett. 2008, 62, 2524–2527. DOI: 10.1016/j.matlet.2007.12.056.
  • Langlet, R.; Lambin, P.; Mayer, A.; Kuzhir, P. P.; Maksimenko, S. A. Dipole Polarizability of Onion-like Carbons and Electromagnetic Properties of Their Composites. Nanotechnology 2008, 19, 115706. DOI: 10.1088/0957-4484/19/11/115706.
  • Das, T.; Boruah, P. K.; Das, M. R.; Saikia, B. K. Formation of Onion-like Fullerene and Chemically Converted Graphene-like Nanosheets from Low Quality Coals: Application in Photocatalytic Degradation of 2-Nitrophenol. RSC Adv. 2016, 6, 35177–35190. DOI: 10.1039/C6RA04392E.
  • Todt, M.; Bitsche, R. D.; Hartmann, M. A.; Fischer, F. D.; Rammerstorfer, F. G. Growth Limit of Carbon Onions – A Continuum Mechanical Study. Int. J. Solids Struct. 2014, 51, 706–715. DOI: 10.1016/j.ijsolstr.2013.10.038.
  • Wu, G.; Nelson, M.; Ma, S.; Meng, H.; Cui, G.; Shen, P. K. Synthesis of Nitrogen-Doped Onion-like Carbon and Its Use in Carbon-Based CoFe Binary Non-Precious-Metal Catalysts for Oxygen-Reduction. Carbon 2011, 49, 3972–3982. DOI: 10.1016/j.carbon.2011.05.036.
  • Matsumoto, N.; Joly-Pottuz, L.; Kinoshita, H.; Ohmae, N. Application of Onion-like Carbon to Micro and Nanotribology. Diamond Relat. Mater. 2007, 16, 1227–1230. DOI: 10.1016/j.diamond.2007.01.031.
  • Nyholm, N.; Espallargas, N. Functionalized Carbon Nanostructures as Lubricant Additives – A Review. Carbon 2023, 201, 1200–1228. DOI: 10.1016/j.carbon.2022.10.035.
  • Gong, Z.; Bai, C.; Qiang, L.; Gao, K.; Zhang, J.; Zhang, B. Onion-like Carbon Films Endow Macro-Scale Superlubricity. Diamond Relat. Mater. 2018, 87, 172–176. DOI: 10.1016/j.diamond.2018.06.004.
  • Wang, Y.; Xing, G.; Han, Z. J.; Shi, Y.; Wong, J. I.; Huang, Z. X.; Ostrikov, K. K.; Yang, H. Y. Pre-Lithiation of Onion-like Carbon/MoS2 Nano-Urchin Anodes for High-Performance Rechargeable Lithium Ion Batteries. Nanoscale 2014, 6, 8884–8890. DOI: 10.1039/c4nr01553c.
  • Dhand, V.; Yadav, M.; Kim, S. H.; Rhee, K. Y. A Comprehensive Review on the Prospects of Multi-Functional Carbon Nano Onions as an Effective, High- Performance Energy Storage Material. Carbon 2021, 175, 534–575. DOI: 10.1016/j.carbon.2020.12.083.
  • Mizuno, H.; Nagano, K.; Tomita, S.; Yanagi, H.; Hiromitsu, I. Organic Photovoltaic Cells with Onion-like Carbon Thin Films as Hole Collection Layers. Thin Solid Films 2018, 654, 69–76. DOI: 10.1016/j.tsf.2018.03.074.
  • Jing, H.; Shi, Y.; Qiu, W.; Wu, D.; Song, X.; An, Y.; Hao, C. Onion-like Graphitic Carbon Covering Metallic Nanocrystals Derived from Brown Coal as a Stable and Efficient Counter Electrode for Dye-Sensitized Solar Cells. J. Power Sources 2019, 414, 495–501. DOI: 10.1016/j.jpowsour.2019.01.042.
  • Shenderova, O.; Grishko, V.; Cunningham, G.; Moseenkov, S.; McGuire, G.; Kuznetsov, V. Onion-like Carbon for Terahertz Electromagnetic Shielding. Diamond Relat. Mater. 2008, 17, 462–466. DOI: 10.1016/j.diamond.2007.08.023.
  • Lubenets, S. V.; Fomenko, L. S.; Natsik, V. D.; Rusakova, A. V. Low-Temperature Mechanical Properties of Fullerites: Structure, Elasticity, Plasticity, Strength. Low Temp. Phys. 2019, 45, 1–38. DOI: 10.1063/1.5082308.
  • Ghavanloo, E.; Izadi, R.; Nayebi, A. Computational Modeling of the Effective Young’s Modulus Values of Fullerene Molecules: A Combined Molecular Dynamics Simulation and Continuum Shell Model. J. Mol. Model. 2018, 24, 71. DOI: 10.1007/s00894-018-3623-x.
  • Jamal-Omidi, M.; ShayanMehr, M.; Rafiee, R. A Study on Equivalent Spherical Structure of Buckyball-C 60 Based on Continuum Shell Model. Lat. Am. J. Solids Struct. 2016, 13, 1016–1029. DOI: 10.1590/1679-78252508.
  • Strozzi, M.; Elishakoff, I. E.; Bochicchio, M.; Cocconcelli, M.; Rubini, R.; Radi, E. A Comparison of Shell Theories for Vibration Analysis of Single-Walled Carbon Nanotubes Based on an Anisotropic Elastic Shell Models. Nanomaterials 2023, 13, 1390. DOI: 10.3390/nano13081390.
  • Xia, X.; Liu, J.-X.; Ou-Yang, Z.-C. An Elastic Continuum Model for Fullerene Energetics. Mod. Phys. Lett. B 1995, 9, 1649–1655.
  • Ghavanloo, E.; Fazelzadeh, S. A. Vibration Characteristics of Single-Walled Carbon Nanotubes Based on Anisotropic Elastic Shell Model Including Chirality Effect. Appl. Math. Modell. 2012, 36, 4988–5000. DOI: 10.1016/j.apm.2011.12.036.
  • Ghavanloo, E.; Fazelzadeh, S. A. Nonlocal Shell Model for Predicting Axisymmetric Vibration of Spherical Shell-Like Nanostructures. Mech. Adv. Mater. Struct. 2015, 22, 597–603. DOI: 10.1080/15376494.2013.828816.
  • Thamwattana, N.; Baowan, D.; Hill, J. M. Continuum Modelling for Interactions between Fullerenes and Other Carbon Nanostructures. J. Comput. Theor. Nano 2009, 6, 972–984. DOI: 10.1166/jctn.2009.1132.
  • Ruoff, R. S.; Ruoff, A. L. Is C60 Stiffer than Diamond? Nature 1991, 350, 663–664. DOI: 10.1038/350663b0.
  • Ruoff, R. S.; Ruoff, A. L. The Bulk Modulus of C60-Molecules and Crystals: A Molecular Mechanics Approach. Appl. Phys. Lett. 1991, 59, 1553–1555. DOI: 10.1063/1.106280.
  • Wang, S.; Chang, Q.; Zhang, G.; Li, F.; Wang, X.; Yang, S.; Troyanov, S. I. Structural Studies of Giant Empty and Endohedral Fullerenes. Front. Chem. 2020, 8, 607712. DOI: 10.3389/fchem.2020.607712.
  • Li, W.; Wang, C.; Wang, T. Molecular Structures and Magnetic Properties of Endohedral Metallofullerenes. Chem. Commun. (Camb.) 2021, 57, 10317–10326. DOI: 10.1039/d1cc04218a.
  • Shen, H. The Compressive Mechanical Properties of C60 and Endohedral M@C60 (M = Si, Ge) Fullerene Molecules. Mater. Lett. 2006, 60, 2050–2054. DOI: 10.1016/j.matlet.2005.12.077.
  • Izadi, R.; Ghavanloo, E.; Nayebi, A. Elastic Properties of Polymer Composites Reinforced with C60 Fullerene and Carbon Onion: Molecular Dynamics Simulation. Physica B 2019, 574, 311636. DOI: 10.1016/j.physb.2019.08.013.
  • Brinkmann, G.; Delgado-Friedrichs, O.; Lisken, S.; Peeters, A.; Cleemput, N. CaGe - A Virtual Environment for Studying Some Special Classes of Plane Graphs - an Update. Match-Commun. Math. Comput. Chem. 2010, 63, 533–552.
  • Ahmad, S. Continuum Elastic Model of Fullerenes and the Sphericity of the Carbon Onion Shells. J. Chem. Phys. 2002, 116, 3396–3400. DOI: 10.1063/1.1446428.
  • Noël, Y.; Pierre, M. D. L.; Zicovich-Wilson, C. M.; Orlando, R.; Dovesi, R. Structural, Electronic and Energetic Properties of Giant Icosahedral Fullerenes up to C6000: Insights from an Ab Initio Hybrid DFT Study. Phys. Chem. Chem. Phys. 2014, 16, 13390–13401. DOI: 10.1039/c4cp01442a.
  • Zhao, H.; Shi, Q.; Han, Z.; Gong, H.; Zhang, Z.; Wu, S.; Wu, J. Anomalous Thermal Stability in Supergiant Onion-like Carbon Fullerenes. Carbon 2018, 138, 243–256. DOI: 10.1016/j.carbon.2018.06.012.
  • Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B Condens Matter 1996, 54, 11169–11186. DOI: 10.1103/physrevb.54.11169.
  • Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved Adsorption Energetics within Density-Functional Theory Using Revised Perdew-Burke-Ernzerhof Functionals. Phys. Rev. B 1999, 59, 7413–7421. DOI: 10.1103/PhysRevB.59.7413.
  • Wu, X.; Vargas, M. C.; Nayak, S.; Lotrich, V.; Scoles, G. Towards Extending the Applicability of Density Functional Theory to Weakly Bound Systems. J. Chem. Phys. 2001, 115, 8748–8757. DOI: 10.1063/1.1412004.
  • Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parameterization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys 2010, 132, 154104.
  • Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B Condens Matter 1984, 50, 17953–17979. DOI: 10.1103/physrevb.50.17953.
  • Ruelle, P.; Farina-Cuendet, A.; Kesselring, U. W. Changes of Molar Volume from Solid to Liquid and Solution: The Particular Case of C60. J. Am. Chem. Soc. 1996, 118, 1777–1784. DOI: 10.1021/ja953467w.
  • Schwerdtfeger, P.; Wirz, L. N.; Avery, J. The Topology of Fullerenes. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2015, 5, 96–145. DOI: 10.1002/wcms.1207.
  • Shen, H. The Compressive Mechanical Properties of Cn (N = 20, 60, 80, 180) and Endohedral M@C60 (M = Na, Al, Fe) Fullerene Molecules. Mol. Phys. 2007, 105, 2405–2409. DOI: 10.1080/00268970701679467.
  • Giannopoulos, G. I.; Georgantzinos, S. K.; Kakavas, P. A.; Anifantis, N. K. Radial Stiffness and Natural Frequencies of Fullerenes via a Structural Mechanics Spring-Based Method. Fuller. Nanotub. Carbon Nanostruct. 2012, 21, 248–257. DOI: 10.1080/1536383X.2011.613539.
  • Hasegawa, M.; Nishidate, K. Semiempirical Approach to the Energetics of Interlayer Binding in Graphite. Phys. Rev. B 2004, 70, 205431. DOI: 10.1103/PhysRevB.70.205431.
  • Klimeš, J.; Bowler, D. R.; Michaelides, A. Van Der Waals Density Functional Applied to Solids. Phys. Rev. B 2011, 83, 195131. DOI: 10.1103/PhysRevB.83.195131.
  • Grimme, S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem. 2006, 27, 1787–1799. DOI: 10.1002/jcc.20495.
  • Román-Pérez, G.; Soler, J. M. Efficient Implmentation of a Van Der Waals Density Functional: Application to Double-Wall Carbon Nanotubes. Phys. Rev. Lett. 2009, 103, 096102. DOI: 10.1103/PhysRevLett.103.096102.
  • Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van Der Waals Density Functional for General Geometries. Phys. Rev. Lett. 2004, 92, 246401. DOI: 10.1103/PhysRevLett.92.246401.
  • Banerjee, A.; Bernoulli, D.; Zhang, H.; Yuen, M.-F.; Liu, J.; Dong, J.; Ding, F.; Lu, J.; Dao, M.; Zhang, W.; et al. Ultralarge Elastic Deformation of Nanoscale Diamond. Science 2018, 360, 300–302. DOI: 10.1126/science.aar4165.
  • Rysaeva, L. K.; Baimova, J. A.; Lisovenko, D. S.; Gorodtsov, V. A.; Dmitriev, S. V. Elastic Properties of Fullerites and Diamond‐like Phases. Phys. Status Solidi (b) 2019, 256, 1800049. DOI: 10.1002/pssb.201800049.
  • Xin, Z.; Jianjun, Z.; Zhong-Can, O.-Y. Strain Energy and Young’s Modulus of Single-Wall Carbon Nanotubes Calculated from Electronic Energy-Band Theory. Phys. Rev. B 2000, 62, 13692–13696. DOI: 10.1103/PhysRevB.62.13692.
  • Bao, W.; Zhu, C.; Cui, W. Simulation of Young’s Modulus of Single-Walled Carbon Nanotubes by Molecular Dynamics. Physica B 2004, 352, 156–163.
  • Cao, K.; Feng, S.; Han, Y.; Gao, L.; Hue Ly, T.; Xu, Z.; Lu, Y. Elastic Straining of Free-Standing Monolayer Graphene. Nat. Commun. 2020, 11, 284. DOI: 10.1038/s41467-019-14130-0.
  • Memarian, F.; Fereidoon, A.; Darvish Ganji, M. Graphene Young’s Modulus: Molecular Mechanics and DFT Treatments. Superlattices Microstruct. 2015, 85, 348–356. DOI: 10.1016/j.spmi.2015.06.001.
  • Saito, K.; Miyazawa, K.; Kizuka, T. Bending Process and Young’s Modulus of Fullerene C60 Nanowhiskers. JJAP 2009, 48, 010217. DOI: 10.1143/JJAP.48.010217.
  • Kizuka, T.; Saito, K.; Miyazawa, K. Young’s Modulus of Crystalline C60 Nanotubes Studied by in Situ Transmission Electron Microscopy. Diamond Relat. Mater. 2008, 17, 972–974. DOI: 10.1016/j.diamond.2008.02.038.
  • Solfiti, E.; Berto, F. Mechanical Properties of Flexible Graphite: Review. Procedia Struct. Integr. 2020, 25, 420–429. DOI: 10.1016/j.prostr.2020.04.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.