80
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Smart fluorescent PVA/CS/AV/g-C3N4QDs hydrogel nanocomposites: synthesis and study of UV absorbance, rheological and self-healing properties

, &
Pages 806-816 | Received 13 Feb 2024, Accepted 13 Mar 2024, Published online: 09 Apr 2024

References

  • Liu, A.; Li, Y.; Shu, D.; Zhou, Y. Facile and Environmental-Friendly Preparation of Alkynyl-Functionalized Graphene Oxide by Epoxy Ring-Opening. Fuller. Nanotub. Carbon Nanostruct. 2021, 29, 407–413. DOI: 10.1080/1536383X.2020.1852548.
  • Chen, P.; Cao, Y.; He, S.; Tian, X.; Cao, Z. Improvement of Mechanical and Thermal Properties of Polylactic Acid Electrospun Films by Incorporating L-Lactide Functionalized Cellulose Nanocrystals. Fuller. Nanotub. Carbon Nanostruct. 2023, 31, 395–403. DOI: 10.1080/1536383X.2023.2168267.
  • Li, J.; Jia, X.; Yin, L. Hydrogel: Diversity of Structures and Applications in Food Science. Food Rev. Int. 2021, 37, 313–372. DOI: 10.1080/87559129.2020.1858313.
  • Morinval, A.; Luc Averous, L. Systems Based on Biobased Thermoplastics: From Bioresources to Biodegradable Packaging Applications. Polym. Rev. 2022, 62, 653–721. DOI: 10.1080/15583724.2021.2012802.
  • Chan, Q. H.; Alias, S. A.; Quek, S. W.; Ng, C. Y.; Ku Marsilla, K. I. A Review of the Preparations, Properties, and Applications of Smart Biodegradable Polymers. Polym-Plast. Tech. Mat. 2023, 62, 1273–1289. DOI: 10.1080/25740881.2023.2204954.
  • Madhi, A.; Shirkavand Hadavand, B. Tri-Functional Bio-Friendly Cross-Linker for UV-Curable Coatings: Synthesis and Study of Viscoelastic Properties. Prog. Color Color Coat. 2021, 14, 199–207. DOI: 10.30509/PCCC.2021.81713.
  • Madhi, A.; S Hadavand, B. Eco-Friendly Castor Oil-Based UV-Curable Urethane Acrylate Zinc Oxide Nanocomposites: Synthesis and Viscoelastic Behavior. J. Compos. Mater. 2020, 54, 101–110. DOI: 10.1177/0021998319858017.
  • Bharati, D.; Saroj, A. Plasticization Effect of Ionic Liquid on Structural, Thermal and Ion Transport Properties of CS-PVA-NaI Based Bio-Polymer Electrolyte Membranes. Polym-Plast. Tech. Mat. 2023, 62, 989–1007. DOI: 10.1080/25740881.2023.2175223.
  • Madhi, A.; Shirkavand Hadavand, B. Bio-Based UV-Curable Urethane Acrylate Graphene Nanocomposites: Synthesis and Properties. SN Appl. Sci. 2020, 2, 724. DOI: 10.1007/s42452-020-2527-4.
  • Jayarathna, S.; Andersson, M.; Andersson, R. Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications. Polymers (Basel) 2022, 14, 4557. DOI: 10.3390/polym14214557.
  • Palanisamy, C. P.; Cui, B.; Zhang, H.; Jayaraman, S.; Kodiveri Muthukaliannan, G. A Comprehensive Review on Corn Starch-Based Nanomaterials: Properties, Simulations, and Applications. Polymers (Basel) 2020, 12, 2161. DOI: 10.3390/polym12092161.
  • Abdullah, A. H. D.; Putri, O. D.; Fikriyyah, A. K.; Nissa, R. C.; Intadiana, S. Effect of Microcrystalline Cellulose on Characteristics of Cassava Starch-Based Bioplastic. Polym-Plast. Tech. Mat. 2020, 59, 1250–1258. DOI: 10.1080/25740881.2020.1738465.
  • Bajer, D.; Janczak, K.; Bajer, K. Novel Starch/Chitosan/Aloe Vera Composites as Promising Biopackaging Materials. J. Polym. Environ. 2020, 28, 1021–1039. DOI: 10.1007/s10924-020-01661-7.
  • Kenawy, E.-R. S.; Kamoun, E. A.; Ghaly, Z. S.; Shokr, A-b M.; El-Meligy, M. A.; Mahmoud, Y. A.-G. Novel Physically Cross-Linked Curcumin-Loaded PVA/Aloe Vera Hydrogel Membranes for Acceleration of Topical Wound Healing: In Vitro and in Vivo Experiments. Arab. J. Sci. Eng. 2023, 48, 497–514. DOI: 10.1007/s13369-022-07283-6.
  • Haghani, F.; Arabnezhad, M. R.; Mohammadi, S.; Ghaffarian-Bahraman, A. Aloe Vera and Streptozotocin-Induced Diabetes Mellitus. Rev. Bras. Farmacogn. 2022, 32, 174–187. DOI: 10.1007/s43450-022-00231-3.
  • Abd Karim, S. F.; Idris, J.; Jai, J.; Musa, M.; Ku Hamid, K. H. Production of Thermoplastic Starch-Aloe Vera Gel Film with High Tensile Strength and Improved Water Solubility. Polymers (Basel) 2022, 14, 4213. DOI: 10.3390/polym14194213.
  • Malikov, E. Y. The Effect of Polyvinyl Alcohol Functionalized Multiwall Carbon Nanotubes on the Improvement of the Compressive Strength of Concrete. Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 781–785. DOI: 10.1080/1536383X.2020.1759557.
  • Hanif, W.; Hardiansyah, A.; Randy, A.; Asri, L. A. Physically Crosslinked PVA/Graphene-Based Materials/Aloe Vera Hydrogel with Antibacterial Activity. RSC Adv. 2021, 11, 29029–29041. DOI: 10.1039/D1RA04992E.
  • Baghaie, S.; Khorasani, M. T.; Zarrabi, A.; Moshtaghian, J. Wound Healing Properties of PVA/Starch/Chitosan Hydrogel Membranes with Nano Zinc Oxide as Antibacterial Wound Dressing Material. J. Biomater. Sci. Polym. Ed. 2017, 28, 2220–2241. DOI: 10.1080/09205063.2017.1390383.
  • Sharmin, E.; Kafyah, M. T.; Alzaydi, A. A.; Fatani, A. A.; Hazazzi, F. A.; Babgi, S. K.; Alqarhi, N. M.; Sindi, A. A. H.; Akram, D.; Alam, M.; et al. Synthesis and Characterization of Polyvinyl Alcohol/Corn Starch/Linseed Polyol-Based Hydrogel Loaded with Biosynthesized Silver Nanoparticles. Int. J. Biol. Macromol. 2020, 163, 2236–2247. DOI: 10.1016/j.ijbiomac.2020.09.044.
  • Madhi, A.; Shirkavand Hadavand, B. Fluorescent Epoxy-Graphene Quantum Dots Nanocomposites: Synthesis and Study of Properties. Polym-Plast. Tech. Mat. 2022, 61, 117–130. DOI: 10.1080/25740881.2021.1959929.
  • Madhi, A.; Shirkavand Hadavand, B. UV Protective Bio-Based Epoxy/Carbon Quantum Dots Nanocomposite Coatings: Synthesis and Investigation of Properties. J. Compos. Mater. 2022, 56, 2201–2210. DOI: 10.1177/00219983221092009.
  • Taborda, N. C.; Ferreira, A. H.; Pereira, F. V. Luminescent Carbon Dots Obtained from Different Precursors and Methods and Their Applications as Sensors for Metal Ions. Fuller. Nanotub. Carbon Nanostruct. 2023, 31, 231–240. DOI: 10.1080/1536383X.2022.2138861.
  • Chai, C.; Qiao, X.; Zheng, L.; Duan, H.; Bian, W.; Choi, M. M. Nitrogen-Doped Carbon Dots a Fluorescent Probe for Detection of p-Hydroxybenzaldehyde and Cell Imaging. Fuller. Nanotub. Carbon Nanostruct. 2022, 30, 534–542. DOI: 10.1080/1536383X.2021.1966419.
  • Nguyen, M. H.; Le, D. T.; Do, H. T.; Le, A. T. Remarkable Luminescent Carbon Quantum Dots: Green Synthesis from Orange Juice Using Microplasma-Liquid Method. Fuller. Nanotub. Carbon Nanostruct. 2024, 32, 282–287. DOI: 10.1080/1536383X.2023.2274917.
  • Tari, A.; Volkan Ugraskan, V.; Yazici, O. Enhanced Mechanical, Thermal and Optical Properties of Poly (Vinyl Alcohol)/Functionalized-Graphitic Carbon Nitride Composites. Fuller. Nanotub. Carbon Nanostruct. 2023, 32, 1–7. DOI: 10.1080/1536383X.2023.2294136.
  • Madhi, A.; Shirkavand Hadavand, B. Bio-Based Surface Modification of Wool Fibers by Chitosan-Graphene Quantum Dots Nanocomposites, Iran. J. Chem. Chem. Eng. 2022, 41, 2202–2212. DOI: 10.30492/IJCCE.2021.527475.4657.
  • Madhi, A.; Shirkavand Hadavand, B.; Madhi, A. H. Bio-Friendly Fluorescent Polyvinyl Alcohol/Gelatin/Chitosan Hydrogel Membranes Strengthened by g-C3N4/CQDs Nanocomposite: Preparation, Investigation of UV-Absorption, Mechanical and Rheological Properties. Fuller. Nanotub. Carbon Nanostruct. 2024, 32, 1–10. DOI: 10.1080/1536383X.2024.2310697.
  • Heiba, Z. K.; El-Naggar, A. M.; Mohamed, M. B.; Altowairqi, Y.; Kamal, A. M. Noval Properties of PVA/PVP Polymer Blend Doped by nano-ZnO/M (M = Co, Cu, Mn, V). Appl. Phys. A 2021, 127, 976. DOI: 10.1007/s00339-021-05129-w.
  • El‐naggar, A. M.; Heiba, Z. K.; Mohamed, M. B.; Kamal, A. M.; Osman, M. M.; Albassam, A. A.; Lakshminarayana, G. Improvement of the Optical Characteristics of PVA/PVP Blend with Different Concentrations of SnS2/Fe. Vinyl Addit. Technol. 2022, 28, 82–93. DOI: 10.1002/vnl.21868.
  • El-Naggar, A. M.; Heiba, Z. K.; Mohamed, M. B.; Kamal, A. M.; Lakshminarayana, G.; Shar M. A. Structural, Linear and Nonlinear Optical Properties of Poly (Vinyl Alcohol) (PVA)/Polyethylene Glycol (PEG)/SnS2:Y Nanocomposite Films. Optik 2022, 258, 168941. DOI: 10.1016/j.ijleo.2022.168941.
  • El-Naggar, A. M.; Heiba, Z. K.; Mohamed, M. B.; Kamal, A. M. Effect of Nano CdS/Mg on Linear and Nonlinear Optical Characteristic of PVA/PVP/PEG Film. J. Mater. Sci. Mater. Electron. 2022, 33, 17235–17248. DOI: 10.1007/s10854-022-08600-3.
  • El-Naggar, A. M.; Heiba, Z. K.; Kamal, A. M.; Altowairqi, Y.; Mohamed, M. B. Enhancing the Linear and Nonlinear Optical Properties by ZnS/V-Doped Polyvinyl Alcohol/Carboxymethyl Cellulose/Polyethylene Glycol Polymeric Nanocomposites for Optoelectronic Applications. J. Mater. Sci. Mater. Electron. 2022, 33, 25127–25138. DOI: 10.1007/s10854-022-09217-2.
  • El-Naggar, A. M.; Alsaggaf, A.; Heiba, Z. K.; Kamal, A. M.; Aldhafiri, A. M.; Fatehmulla, A.; Mohamed, M. B. 2023. Exploring the Structural, Optical and Electrical Characteristics of PVA/PANi Blends. Opt. Mater. 2023, 139, 113771. DOI: 10.1016/j.optmat.2023.113771.
  • Heiba, Z. K.; El-Naggar, A. M.; Kamal, A. M.; Abd-Elkader, O. H.; Mohamed, M. B. 2023 Optical and Dielectric Properties of PVC/TiO2/TBAI Ionic Liquid Polymer Electrolyte. Opt. Mater. 2023, 139, 113764. DOI: 10.1016/j.optmat.2023.113764.
  • Zhu, C.; Fu, Y.; Liu, C.; Liu, Y.; Hu, L.; Liu, J.; Bello, I.; Li, H.; Liu, N.; Guo, S.; et al. Carbon Dots as Fillers Inducing Healing/Self‐Healing and Anticorrosion Properties in Polymers. Adv. Mater. 2017, 29, 1701399. DOI: 10.1002/adma.201701399.
  • Madhi, A. Smart Epoxy/Polyurethane/Carbon Quantum Dots Hybrid Coatings: Synthesis and Study of UV-Shielding, Viscoelastic, and anti-Corrosive Properties. Polym-Plas. Tech. Mat. 2023, 62, 403–418. DOI: 10.1080/25740881.2022.2116342.
  • Liu, X.; Jiang, B.; Liao, G.; Zuo, J.; Jing Xu, J.; Shah, S. P. Research on the Smart Behavior of MCNT Grafted CF/Cement-Based Composites. Fuller. Nanotub. Carbon Nanostruct. 2021, 29, 844–851. DOI: 10.1080/1536383X.2021.1910239.
  • Fathinejad, H.; Mirzaeian, M.; Shabahang, A. Synthesis and Characterization of Hydrogel Nanocomposite Based on Functional CNTs-Copper Sulfate-Polymethyl Methacrylate. Fuller. Nanotub. Carbon Nanostruct. 2022, 30, 1084–1089. DOI: 10.1080/1536383X.2022.2061956.
  • Lu, B.; Lin, F.; Jiang, X.; Cheng, J.; Lu, Q.; Song, J.; Chen, C.; Huang, B. One-Pot Assembly of Microfibrillated Cellulose Reinforced PVA–Borax Hydrogels with Self-Healing and pH-Responsive Properties. ACS Sustain. Chem. Eng. 2017, 5, 948–956. DOI: 10.1021/acssuschemeng.6b02279.
  • Ke, T.; Zhao, L.; Fan, X.; Gu, H. Rapid Self-Healing, Self-Adhesive, anti-Freezing, Moisturizing, Antibacterial and Multi-Stimuli-Responsive PVA/Starch/Tea Polyphenol-Based Composite Conductive Organohydrogel as Flexible Strain Sensor. J. Mater. Sci. Technol. 2023, 135, 199–212. DOI: 10.1016/j.jmst.2022.06.032.
  • Ori, O.; Cataldo, F.; Putz, M. V.; Forrest Kaatz, F.; Bultheel, A. Cooperative Topological Accumulation of Vacancies in Honeycomb Lattices. Fuller. Nanotub. Carbon Nanostruct. 2016, 24, 353–362. DOI: 10.1080/1536383X.2016.1155561.
  • Putri, A. P.; Bose, R. K.; Chalid, M.; Picchioni, F. Rheological and Self-Healing Behavior of Hydrogels Synthesized from l-Lysine-Functionalized Alginate Dialdehyde. Polymers (Basel) 2023, 15, 15–1010. DOI: 10.3390/polym15041010.
  • Pramanik, B. Short Peptide-Based Smart Thixotropic Hydrogels. Gels 2022, 8, 569. DOI: 10.3390/gels8090569.
  • Rumon, M. M. H.; Akib, A. A.; Sultana, F.; Moniruzzaman, M.; Niloy, M. S.; Shakil, M. S.; Roy, C. K. Self-Healing Hydrogels: Development. Biomed. Appl Challenges Polymer. 2022, 14, 4539. DOI: 10.3390/polym14214539.
  • Tadesse, M. G.; Lübben, J. F. Recent Progress in Self-Healable Hydrogel-Based Electroluminescent Devices: A Comprehensive Review. Gels 2023, 9, 250. DOI: 10.3390/gels9030250.
  • Zhang, Z.; Li, T.; Chen, B.; Wang, S.; Guo, Z. Self-Healing Supramolecular Hydrogel of Poly (Vinyl Alcohol)/Chitosan Carbon Dots. J. Mater. Sci. 2017, 52, 10614–10623. DOI: 10.1007/s10853-017-1222-3.
  • Madhi, A.; Shirkavand Hadavand, B.; Amoozadeh, A. Synthesis, Characterization and Study on Thermal Stability, Mechanical Properties and Thermal Conductivity of UV-Curable Urethane acrylate-Clay (MMT) Nanocomposites. Appl. Chem. Today 2017, 12, 91–98. DOI: 10.22075/chem.2017.11771.1138.
  • Lee, S. Y.; San Lim, H.; Lee, N. E.; Cho, S. O. Biocompatible UV-Absorbing Polymer Nanoparticles Prepared by Electron Irradiation for Application in Sunscreen. RSC Adv. 2020, 10, 356–361. DOI: 10.1039/C9RA09752J.
  • Khan, A.; Ezati, P.; Rhim, J. W. 2023 Chitosan/Starch-Based Active Packaging Film with N, P-Doped Carbon Dots for Meat Packaging. ACS Appl. Bio Mater. 2023, 6, 1294–1305. DOI: 10.1021/acsabm.3c00039.
  • Madhi, A.; Shirkavand Hadavand, B.; Madhi, A. H. Environmentally Friendly g-C3N4/Carbon Quantum Dots Nanocomposites as Fluorescent and anti-Spoofing Inks. Fuller. Nanotub. Carbon Nanostruct. 2023, 31, 953–960. DOI: 10.1080/1536383X.2023.2226272.
  • Ji, F.; Zhou, W.; Zhang, Z.; Guo, Y.; Zhang, B. Luminescent Mechanism Analyzing and Metal-Ion Sensing of Eu (III)-Organic Ligands Complex Doped Gelatin-Based Films and Hydrogels. Mater. Sci. Eng. B 2023, 290, 116339. DOI: 10.1016/j.mseb.2023.116339.
  • Madhi, A. Green Fluorescent Unsaturated Polyester/Graphitic Carbon Nitride Quantum Dots Nanocomposites: Preparation and Study of UV-Resistance, Mechanical and Viscoelastic Properties. J. Compos. Mater. 2023, 57, 2437–2450. DOI: 10.1177/00219983231173480.
  • Gutiérrez, T. J.; Álvarez, K. Physico-Chemical Properties and in Vitro Digestibility of Edible Films Made from Plantian Flour with Added Aloe Vera Gel. J. Funct. Foods 2016, 26, 750–762. DOI: 10.1016/j.jff.2016.08.054.
  • Oluwasina, O. O.; Falola, T.; Wahab, O. J.; Idahagbon, N. B. Enhancement of Physical and Mechanical Properties of Dioscorea Dumetorum Starch Films with Dialdehyde Starch Solution. Starch Stärke. 2018, 70, 1700148. DOI: 10.1002/star.201700148.
  • Phuangmali, I.; Seadan, M.; Khankrua, R.; Suttiruengwong, S. Reactive Compatibilization of Poly(Hydroxybutyrate-co-Hydroxyvalerate)/Polyvinyl Alcohol Blends. Polym-Plast. Tech. Mat. 2021, 60, 1–13. DOI: 10.1080/25740881.2021.1918162.
  • Arik Kibar, E. A.; Us, F. Evaluation of Structural Properties of Cellulose Ether-Corn Starch Based Biodegradable Films. Int. J. Polym. Mater. 2014, 63, 342–351. DOI: 10.1080/00914037.2013.845190.
  • Chelu, M.; Popa, M.; Ozon, E. A.; Pandele Cusu, J.; Anastasescu, M.; Surdu, V. A.; Calderon Moreno, J.; Musuc, A. M. High-Content Aloe Vera Based Hydrogels: Physicochemical and Pharmaceutical Properties. Polymers (Basel) 2023, 15, 1312. DOI: 10.3390/polym15051312.
  • El-Naggar, A. M.; Heiba, Z. K., Mohamed, M. B., Kamal, A. M., Abd-Elkader, O. H., Lakshminarayana, G. Effect of ZnO/(Co or Mn) Ratios on the Structure and Optical Spectroscopy Parameters of PVA/PVP/PEG Blended Polymer. Opt. Mater. 2022, 128, 112411. DOI: 10.1016/j.optmat.2022.112411.
  • El-Naggar, A. M., Heiba, Z. K., Mohamed, M. B., Kamal, A. M., Lakshminarayana, G., Abd-Elkader, O. H. Effect of MnS/ZnS Nanocomposite on the Structural, Linear and Nonlinear Optical Properties of PVA/CMC Blended Polymer. Opt. Mater. 2022, 128, 112379. DOI: 10.1016/j.optmat.2022.112379.
  • El-Naggar, A. M.; Heiba, Z. K.; Mohamed, M. B.; Kamal, A. M.; Aldhafiri, A. M.; Lakshminarayana, G. Improving the Optical Characteristics of PVA/PVP/PEG Blend via Loading with Nano SnS2/Y. J. Mater. Sci: Mater. Electron. 2022, 33, 12783–12795. DOI: 10.1007/s10854-022-08224-7.
  • Dowari, P.; Pramanik, B.; Das, D. pH and Secondary Structure Instructed Aggregation to a Thixotropic Hydrogel by a Peptide Amphiphile. Bull. Mater. Sci. 2020, 43, 70. DOI: 10.1007/s12034-019-2027-6.
  • Kuddushi, M.; Pandey, D. K.; Singh, D. K.; Mata, J.; Malek, N. An Ionic Hydrogel with Stimuli-Responsive, Self-Healable and Injectable Characteristics for the Targeted and Sustained Delivery of Doxorubicin in the Treatment of Breast Cancer. Mater. Adv. 2022, 3, 632–646. DOI: 10.1039/D1MA00835H.
  • Chowdhuri, S.; Saha, A.; Pramanik, B.; Das, S.; Dowari, P.; Ukil, A.; Das, D. Smart Thixotropic Hydrogels by Disulfide-Linked Short Peptides for Effective Three-Dimensional Cell Proliferation. Langmuir 2020, 36, 15450–15462. DOI: 10.1021/acs.langmuir.0c03324.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.