75
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and functionalization of carbon nanospheres from asphaltene fraction for crude oil upgrading and viscosity reduction

, , , , , & show all
Pages 851-865 | Received 25 Mar 2024, Accepted 02 Apr 2024, Published online: 12 Apr 2024

References

  • Ayan, R.; Dikshita, K.; Garima, P.; Kanak, K.; Pandali, P. K.; Samriddhi, N.; Utkarsh, C.; Senthil, K. A Review of Nanomaterials and Their Applications in Oil and Petroleum Industries. Nano Ex. 2023, 4, 022002.
  • Camilo, A. F.; Carlos, A. F.; Richard, D. Z.; Ítalo, B.; Ángela, F.; Farid, B. C. Field Applications of Nanotechnology in the Oil and Gas Industry: Recent Advances and Perspectives. Energy Fuels. 2021, 35, 19266–19287.
  • Shah, S. N.; Fakoya, M. F. Nanomaterials in the Oil and Gas Industry. In Advances in Smart Nanomaterials and Their Applications; Elsevier: Amsterdam, The Netherlands, 2023; pp 423–444.
  • Shingala, J.; Shah, V.; Dudhat, K.; Manan, S. Evolution of Nanomaterials in Petroleum Industries: Application and the Challenges. J. Petrol. Explor. Prod. Technol. 2020, 10, 3993–4006. DOI: 10.1007/s13202-020-00914-4.
  • Mahmood, M. S. A.; Hamad, A. A. Nanomaterials in Petroleum Industry. In Handbook of Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2024; Vol. 1, pp 617–648.
  • Behera, A. Nanomaterials. In Advanced Materials; Springer: Cham, 2022; pp. 77–125.
  • Sagala, F.; Hethnawi, A.; Nassar, N. N. Challenges and Uncertainties of Using Nanoparticles in Oil and Gas Applications. In Nanoparticles: An Emerging Technology for Oil Production and Processing Applications (Lecture Notes in Nanoscale Science and Technology); Springer: Cham, 2022; pp 497–506.
  • Daraee, M.; Hassani, S. S.; Saeedirad, R. Nanomaterials in the Transportation Industry. In Handbook of Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2024; Vol. 1; pp 567–591.
  • Hussain, C. M. Handbook of Functionalized Nanomaterials for Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2020.
  • El-Gendy, N. S.; Nassar, H. N.; Speight, J. G. Petroleum Nanobiotechnology: Modern Applications for a Sustainable Future, 1st ed.; Apple Academic Press: New York, 2021.
  • Agista, M. N.; Guo, K.; Yu, Z. A State-of-the-Art Review of Nanoparticles Application in Petroleum with a Focus on Enhanced Oil Recovery. Appl. Sci. 2018, 8, 871. DOI: 10.3390/app8060871.
  • Medina, O. E.; Olmos, C.; Lopera, S. H.; Cortés, F. B.; Franco, C. A. Nanotechnology Applied to Thermal Enhanced Oil Recovery Processes: A Review. Energies. 2019, 12, 4671. DOI: 10.3390/en12244671.
  • Alsoraya, M.; Zhao, M.; Fan, D. Engineered Nanomaterials for Sustainable Oil Separation and Recovery. ChemNanoMat. 2020, 6, 1539–1552.
  • Kazemzadeh, Y.; Shojaei, S.; Riazi, M.; Sharifi, M. Review on Application of Nanoparticles for EOR Purposes: A Critical Review of the Opportunities and Challenges. Chin. J. Chem. Eng. 2019, 27, 237–246. DOI: 10.1016/j.cjche.2018.05.022.
  • Peng, B.; Zhang, L.; Luo, J.; Wang, P.; Ding, B.; Zeng, M.; Cheng, Z. Z. A Review of Nanomaterials for Nanofluid Enhanced Oil Recovery. RSC Adv. 2017, 7, 32246–32254. DOI: 10.1039/C7RA05592G.
  • Negin, C.; Ali, S.; Xie, Q. Application of Nanotechnology for Enhancing Oil Recovery – A Review. Petroleum. 2016, 2, 324–333. DOI: 10.1016/j.petlm.2016.10.002.
  • Ke, H.; Yuan, M.; Xia, S. A Review of Nanomaterials as Viscosity Reducer for Heavy Oil. J. Dispersion Sci. Technol. 2022, 43, 1271–1282. DOI: 10.1080/01932691.2020.1851246.
  • Sabet, S. A.; Omidkhah, M. R.; Jafari, A. Methods for Viscosity Reduction of Heavy Crude Oil with Focus on Nano Catalysts: A Review Study. Iran. Chem. Eng. J. 2020, 19, 74–85.
  • Alsaba, M. T.; Al Dushaishi, M. F.; Abbas, A. K. A Comprehensive Review of Nanoparticles Applications in the Oil and Gas Industry. J. Petrol. Explor. Prod. Technol. 2020, 10, 1389–1399. DOI: 10.1007/s13202-019-00825-z.
  • Tong, Q.; Fan, Z.; Liu, Q.; Qiao, S.; Cai, L.; Fu, Y.; Zhang, X.; Sun, A. Research Progress in Nanofluid-Enhanced Oil Recovery Technology and Mechanism. Molecules. 2023, 28, 7478. DOI: 10.3390/molecules28227478.
  • Sun, Y.; Yang, D.; Shi, L.; Wu, H.; Cao, Y.; He, Y.; Xie, T. Properties of Nanofluids and Their Applications in Enhanced Oil Recovery: A Comprehensive Review. Energy Fuels. 2020, 34, 1202–1218. DOI: 10.1021/acs.energyfuels.9b03501.
  • Kumar, R. S.; Sharma, T. Nanofluids: Applications and Its Future for Oil and Gas Industry. In Nanofluids and Their Engineering Applications; CRC Press: Boca Raton, FL, 2019; pp 465–478.
  • Aristizábal-Fontal, J. E.; Cortés, F. B.; Franco, C. A. Viscosity Reduction of Extra Heavy Crude Oil by Magnetite Nanoparticle-Based Ferrofluids. Adsorpt. Sci. Technol. 2018, 36, 23–45. DOI: 10.1177/0263617417704309.
  • Bohorquez, L. C.; Insignares, J. J.; Montes, D.; Zabala, R. D.; Osorio, R.; Franco, C. A.; Franco, C. A. Nanotechnology Applications for Viscosity Reduction of Heavy and Extra-Heavy Oils: A Review. In Nanoparticles: An Emerging Technology for Oil Production and Processing Applications; Springer: Cham, 2022; pp 241–267.
  • Gomaa, S.; Taha, M.; El-Hoshoudy, A. N. Investigating the Effect of Different Nanofluids on Crude Oil Viscosity. Pet. Petrochem. Eng J 2018, 2, 000177.
  • Li, N.; Ke, H.; Wang, T.; Xia, S. Recyclable Surface-Functionalized Fe3O4 Particles for Heavy Oil Viscosity Reduction. J. Pet. Sci. Eng. 2022, 211, 110112. DOI: 10.1016/j.petrol.2022.110112.
  • Nassar, N. N.; Hassan, A.; Pereira-Almao, P. Effect of the Particle Size on Asphaltene Adsorption and Catalytic Oxidation onto Alumina Particles. Energy Fuels 2011, 25, 3961–3965. DOI: 10.1021/ef2008387.
  • Hajiabadi, S. H.; Aghaei, H.; Kalateh-Aghamohammadi, M.; Shorgasthi, M. An Overview on the Significance of Carbon-Based Nanomaterials in Upstream Oil and Gas Industry. J. Pet. Sci. Eng. 2020, 186, 106783. DOI: 10.1016/j.petrol.2019.106783.
  • Poinern, G.; Brundavanam, S.; Shah, M.; Laava, I.; Fawcett, D. Photothermal Response of CVD Synthesized Carbon (Nano) Spheres/Aqueous Nanofluids for Potential Application in Direct Solar Absorption Collectors: A Preliminary Investigation. Nanotechnol. Sci. Appl. 2012, 5, 49–59. DOI: 10.2147/NSA.S34166.
  • Coville, N.; Mhlanga, S.; Nxumalo, E.; Shaikjee, A. A Review of Shaped Carbon Nanomaterials. S. Afr. J. Sci. 2011, 107, 1–15. DOI: 10.4102/sajs.v107i5/6.418.
  • Li, X.; Chen, W.; Zou, C. The Stability, Viscosity and Thermal Conductivity of Carbon Nanotubes Nanofluids with High Particle Concentration: A Surface Modification Approach. Powder Technol. 2020, 361, 957–967. DOI: 10.1016/j.powtec.2019.10.106.
  • Karami, M.; Bahabadi, M. A.; Delfani, S.; Ghozatloo, A. A New Application of Carbon Nanotubes Nanofluid as Working Fluid of Low-Temperature Direct Absorption Solar Collector. Sol. Energy Mater. Sol. Cells. 2014, 121, 114–118. DOI: 10.1016/j.solmat.2013.11.004.
  • Ahoee, M. M.; Fakhroueian, Z.; Sadeghi, M. T.; Esmaeilzadeh, P. Impact of Amine@ZnO/CNT and Fatty Acid@ZnO/CNT as Hydrophilic Functionalized Nanocomposites on Reduction of Reavy Oil Viscosity. J. Pet. Sci. Eng. 2019, 172, 199–208. DOI: 10.1016/j.petrol.2018.09.044.
  • Yao, Y.; Xu, J.; Huang, Y.; Zhang, T. Synthesis and Applications of Carbon Nanospheres: A Review. Particuology. 2024, 87, 325–338. DOI: 10.1016/j.partic.2023.09.007.
  • Sivamaran, V.; Balasubramanian, V.; Gopalakrishnan, M.; Viswabaskaran, V.; Gourav Rao, A.; Selvamani, S. T. Carbon Nanotubes, Nanorings, and Nanospheres: Synthesis and Fabrication via Chemical Vapor Deposition—A Review. Nanomat. Nanotechnol. 2022, 12, 1–21. DOI: 10.1177/18479804221079495.
  • Ba, T. L.; Bohus, M.; Lukács, I. E.; Wongwises, S.; Gróf, G.; Hernadi, K.; Szilágyi, I. M. Comparative Study of Carbon Nanosphere and Carbon Nanopowder on Viscosity and Thermal Conductivity of Nanofluids. Nanomaterials. 2021, 11, 608. DOI: 10.3390/nano11030608.
  • Li, P.; Qu, D.; Zhang, L.; Su, C.; Ma, J.; Wang, Q.; Liu, C.; Wang, Y.; Feng, H.; Li, C.; Wu, W. A Carbon Nanosphere Nanofluid for Improving the Toughness and Thermal Properties of Epoxy Composites. Nanotechnology. 2022, 33, 375704. DOI: 10.1088/1361-6528/ac764f.
  • Sun, D. A Simple Scheme for Extraction of Asphaltenes from Asphalt at Room Temperature. Coatings. 2022, 12, 407. DOI: 10.3390/coatings12030407.
  • Ali, N.; Bahman, A. M.; Aljuwayhel, N. F.; Ebrahim, S. A.; Mukherjee, S.; Alsayegh, A. Carbon-Based Nanofluids and Their Advances towards Heat Transfer Applications—A Review. Nanomaterials 2021, 11, 1628. DOI: 10.3390/nano11061628.
  • Boufades, D.; Née Mesdour, S. H.; Moussiden, A.; Benmebrouka, H.; Hérold, C.; Kaddour, O. One-Step Synthesis and Characterization of Carbon Nanospheres via Natural Gas Condensate Pyrolysis. Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 716–723. DOI: 10.1080/1536383X.2020.1750383.
  • Hammadou Née Mesdour, S.; Boufades, D.; Bousak, H.; Moussiden, A.; Benmabrouka, H.; Demim, S.; Hamada, B.; Hérold, C.; Kaddour, O. Potential Application of Carbon Nanospheres as Adsorbent for the Simultaneous Desulfurization and Demetallization of Transportations Fuels. Fuller. Nanotub. Carbon Nanostruct. 2020, 30, 419–427. DOI: 10.1080/1536383X.2021.1947809.
  • Zhang, X.; Li, Z.; Xu, S.; Ruan, Y. Carbon Quantum Dot-Sensitized Hollow TiO2 Spheres for High-Performance Visible Light Photocatalysis. New J. Chem. 2021, 45, 8693–8700. DOI: 10.1039/D1NJ00501D.
  • Gharbi, K.; Benamara, C.; Benyounes, K.; Kelland, M. A. Toward Separation and Characterization of Asphaltene Acid and Base Fractions. Energy Fuels. 2021, 35, 14610–14617. DOI: 10.1021/acs.energyfuels.1c01999.
  • Bouhadda, Y.; Bormann, D.; Sheu, E.; Bendedouch, D.; Krallafa, A.; Daaou, M. Characterization of Algerian Hassi-Messaoud Asphaltene Structure Using Raman Spectrometry and X-Ray Diffraction. Fuel. 2007, 86, 1855–1864. DOI: 10.1016/j.fuel.2006.12.006.
  • Daaou, M.; Bendedouch, D.; Modarressi, A.; Rogalski, M. Properties of the Polar Fraction of Hassi-Messaoud Asphaltenes. Energy Fuels. 2012, 26, 5672–5678. DOI: 10.1021/ef300573d.
  • Daaou, M.; Larbi, A.; Martínez-Haya, B.; Rogalski, M. A Comparative Study of the Chemical Structure of Asphaltenes from Algerian Petroleum Collected at Different Stages of Extraction and Processing. J. Pet. Sci. Eng. 2016, 138, 50–56. DOI: 10.1016/j.petrol.2015.11.040.
  • Daaou, M.; Modarressi, A.; Bendedouch, D.; Bouhadda, Y.; Krier, G.; Rogalski, M. Characterization of the Nonstable Fraction of Hassi − Messaoud Asphaltenes. Energy Fuels. 2008, 22, 3134–3142. DOI: 10.1021/ef800078u.
  • Alemi, F. M.; Dehghani, S. A. M.; Rashidi, A.; Hosseinpour, N.; Mohammadi, S. A Mechanistic Study toward the Effect of Single-Walled Carbon Nanotubes on Asphaltene Precipitation and Aggregation in Unstable Crude Oil. J. Mol. Liq. 2021, 330, 115594. DOI: 10.1016/j.molliq.2021.115594.
  • Bakos, L. P.; Justh, N.; Hernádi, K.; Kiss, G.; Réti, B.; Erdélyi, Z.; Parditka, B.; Szilágyi, I. M. Core-Shell Carbon nanosphere-TiO2 Composite and Hollow TiO2 Nanospheres Prepared by Atomic Layer Deposition. J. Phys: Conf. Ser. 2016, 764, 012005. DOI: 10.1088/1742-6596/764/1/012005.
  • Gyulavári, T.; Veréb, G.; Pap, Z.; Réti, B.; Baan, K.; Todea, M.; Magyari, K.; Szilágyi, I. M.; Hernadi, K. Utilization of Carbon Nanospheres in Photocatalyst Production: From Composites to Highly Active Hollow Structures. Materials. 2019, 12, 2537. DOI: 10.3390/ma12162537.
  • Mohammad, R.; Kandasamy, R. Nanoparticle Shapes on Electric and Magnetic Force in Water, Ethylene Glycol and Engine Oil-Based Cu, Al2O3 and SWCNTs. J. Mol. Liq. 2017, 237, 54–64. DOI: 10.1016/j.molliq.2017.04.045.
  • Sevilla, M.; Fuertes, A. B. Chemical and Structural Properties of Carbonaceous Products Obtained by Hydrothermal Carbonization of Saccharides. Chemistry. 2009, 15, 4195–4203. DOI: 10.1002/chem.200802097.
  • Liu, R.; Ren, F.; Su, W.; He, P.; Shen, C.; Zhang, L.; Wang, C. A. Synthesis of TiO2 Hollow Spheres with Tunable Pore Structure and Enhanced Photocatalytic Activity. Ceramics Int. 2015, 41, 14615–14620. DOI: 10.1016/j.ceramint.2015.07.181.
  • Heng, Z. W.; Chong, W. C.; Pang, Y. L.; Sim, L. C. Photocatalytic Degradation of Methylene Blue under Visible Light Using Carbon Dot/Titanium Dioxide Nanohybrid. IOP Conf. Ser Mater. Sci. Eng. 2020, 991, 012092. DOI: 10.1088/1757-899X/991/1/012092.
  • Liu, Z. G.; He, X. X.; Zhao, J. H.; Xu, C. M.; Qiao, Y.; Li, L.; Chou, S. L. Carbon Nanosphere Synthesis and Applications for Rechargeable Batteries. Chem. Commun. 2023, 59, 4257–4273. DOI: 10.1039/d3cc00402c.
  • Hossain, M. A.; Islam, S. Synthesis of Carbon Nanoparticles from Kerosene and Their Characterization by SEM/EDX, XRD and FTIR. American Journal of Nano Research and Applications. 2013, 1, 52–56. DOI: 10.11648/j.nano.20130102.12.
  • Guan, S.; Liu, X.; Eli, W. The Synthesis of Nanocarbon-Poly (Ricinoleic Acid) Composite as a Lubricant Additive with Improved Dispersity and anti-Wear Properties. RSC Adv. 2021, 11, 18171–18178. DOI: 10.1039/d1ra01720a.
  • Supriya, S.; Divyashree, A.; Yallappa, S.; Hegde, G. Carbon Nanospheres Obtained from Carbonization of Bio-Resource: A Catalyst Free Synthesis. Mater. Today Proc. 2018, 5, 2907–2911.
  • Krishnamurthy, G.; Namitha, R. Synthesis of Structurally Novel Carbon Micro/Nanospheres by Low Temperature-Hydrothermal Process. J. Chil. Chem. Soc. 2013, 58, 1930–1933. DOI: 10.4067/S0717-97072013000300030.
  • Mohan, A. N.; Manoj, B. Synthesis and Characterization of Carbon Nanospheres from Hydrocarbon Soot. Int. J. Electrochem. Sci. 2012, 7, 9537–9549. DOI: 10.1016/S1452-3981(23)16217-1.
  • Gupta, A.; Kour, R.; Brar, L. K. Facile Synthesis of Carbon Nanospheres from Saccharides for Photocatalytic Applications. SN Appl. Sci. 2019, 1, 1–8. DOI: 10.1007/s42452-019-1213-x.
  • Dlamini, N. L.; Mukaya, H. E.; Van Zyl, R. L.; Jansen van Vuuren, N. C.; Mbianda, X. Y. Carbon Nanospheres Conjugated Bisphosphonates: Synthesis, Characterization and in Vitro Antimalarial Activity. Artif. Cells. Nanomed. Biotechnol. 2018, 46, 287–296. DOI: 10.1080/21691401.2018.1491481.
  • Cui, Y.; Kang, W.; Qin, L.; Ma, J.; Liu, X.; Yang, Y. Ultrafast Synthesis of Magnetic Hollow Carbon Nanospheres for the Adsorption of Quinoline from Coking Wastewater. New J. Chem. 2020, 44, 7490–7500. DOI: 10.1039/D0NJ00944J.
  • Hemeida, A. M. Rheological Behavior of Saudi Crude Oils. J. King Saud Univ. Eng. Sci. 1990, 2, 181–193. DOI: 10.1016/S1018-3639(18)30886-9.
  • Taborda, E. A.; Franco, C. A.; Lopera, S. H.; Alvarado, V.; Cortés, F. B. Effect of Nanoparticles/Nanofluids on the Rheology of Heavy Crude Oil and Its Mobility on Porous Media at Reservoir Conditions. Fuel 2016, 184, 222–232. DOI: 10.1016/j.fuel.2016.07.013.
  • Dos Santos, R. G.; Bannwart, A. C.; Briceño, M. I.; Loh, W. Physico-Chemical Properties of Heavy Crude Oil-in-Water Emulsions Stabilized by Mixtures of Ionic and Non-Ionic Ethoxylated Nonylphenol Surfactants and Medium Chain Alcohols. Chem. Eng. Res. Des. 2011, 89, 957–967. DOI: 10.1016/j.cherd.2010.11.020.
  • Fan, Z. X.; Wang, T. F.; He, Y. H. Upgrading and Viscosity Reducing of Heavy Oils by [BMIM][AlCl4] Ionic Liquid. J. Fuel Chem. Technol. 2009, 37, 690–693. DOI: 10.1016/S1872-5813(10)60015-1.
  • Cheraghian, G. Effects of Titanium Dioxide Nanoparticles on the Efficiency of Surfactant Flooding of Heavy Oil in a Glass Micromodel. Petr. Sci. Technol. 2016, 34, 260–267. DOI: 10.1080/10916466.2015.1132233.
  • Parejas, R.; Moura, F. J.; de Avillez, R. R.; de Souza Mendes, P. R. Effects of Al2O3-NiO, TiO2 and (Mg, Ni)O Particles on the Viscosity of Heavy Oil during Aquathermolysis. Colloids Surf. A Physicochem. Eng. Asp. 2021, 625, 126863. DOI: 10.1016/j.colsurfa.2021.126863.
  • Taborda, E. A.; Alvarado, V.; Franco, C. A.; Cortés, F. B. Rheological Demonstration of Alteration in the Heavy Crude Oil Fluid Structure upon Addition of Nanoparticles. Fuel. 2017, 189, 322–333. DOI: 10.1016/j.fuel.2016.10.110.
  • Meredith, W.; Kelland, S. J.; Jones, D. M. Influence of Biodegradation on Crude Oil Acidity and Carboxylic Acid Composition. Org. Geochem. 2000, 31, 1059–1073. DOI: 10.1016/S0146-6380(00)00136-4.
  • Ashoori, S.; Sharifi, M.; Masoumi, M.; Salehi, M. M. The Relationship between SARA Fractions and Crude Oil Stability. Egypt. J. Pet. 2017, 26, 209–213. DOI: 10.1016/j.ejpe.2016.04.002.
  • Montes, D.; Cortés, F. B.; Franco, C. A. Reduction of Heavy Oil Viscosity through Ultrasound Cavitation Assisted by NiO Nanocrystals-Functionalized SiO2 Nanoparticles. DYNA 2018, 85, 153–160. DOI: 10.15446/dyna.v85n207.71804.
  • Cui, J.; Zhang, Z.; Liu, X.; Liu, L.; Peng, J. Studies on Viscosity Reduction and Structural Change of Crude Oil Treated with Acoustic Cavitation. Fuel 2020, 263, 116638–116644. DOI: 10.1016/j.fuel.2019.116638.
  • Gaweł, B.; Eftekhardadkhah, M.; Øye, G. An Elemental Composition and FT-IR Spectroscopy Analysis of Crude Oils and Their Fractions. Energy Fuels 2013, 28, 997–1003. DOI: 10.1021/ef402286y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.