29
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Intense Continuous Wave Laser to Synthesize Luminescent Solution of Carbon Dots

, ORCID Icon &
Pages 866-875 | Received 11 Mar 2024, Accepted 02 Apr 2024, Published online: 11 Apr 2024

References

  • A. Torrisi, A.; Torrisi, L.; Cutroneo, M.; Michalcova, A.; D’Angelo, M.; Silipigni, L. Ultra-High Molecular Weight Polyethylene Modifications Produced by Carbon Nanotubes and Fe2O3 Nanoparticles. Polymers. 2023, 15, 1169. DOI: 10.3390/polym15051169.
  • Visco, A. M.; Brancato, V.; Torrisi, L.; Cutroneo, M. Employment of Carbon Nano Materials for the Welding of Polyethylene Joints with a Nd:YAG Laser. Int. J. Polym. Anal. Charact. 2014, 19, 489–499. DOI: 10.1080/1023666X.2014.921108.
  • Asadian, E.; Ghalkhani, M.; Shahrokhian, S. Electrochemical Sensing Based on Carbon Nanoparticles: A Review. Sens. Actuators, B. 2019, 293, 183–209. DOI: 10.1016/j.snb.2019.04.075.
  • Zare, H.; Ahmadi, S.; Ghasemi, A.; Ghanbari, M.; Rabiee, N.; Bagherzadeh, M.; Karimi, M.; Webster, T. J.; Hamblin, M. R.; Mostafavi, E. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. IJN. 2021, 16, 1681–1706. DOI: 10.2147/IJN.S299448.
  • Bhunia, S. K.; Saha, A.; Maity, A. R.; Ray, S. C.; Jana, N. R. Carbon Nanoparticle-Based Fluorescent Bioimaging Probes. Sci. Rep. 2013, 3, 1–7. DOI: 10.1038/srep01473.
  • Cao, L.; Zan, M.; Chen, F.; Kou, X.; Liu, Y.; Wang, P.; Mei, Q.; Hou, Z.; Dong, W. F.; Li, L. Formation Mechanism of Carbon Dots: From Chemical Structures to Fluorescent Behaviors. Carbon. 2022, 194, 42–51. DOI: 10.1016/j.carbon.2022.03.058.
  • Torrisi, A.; Cutroneo, M.; Torrisi, L.; Vacík, J. Biocompatible Nanoparticles Production by Pulsed Laser Ablation in Liquids. J. Inst. 2020, 15, C03053, C03053–C03053. DOI: 10.1088/1748-0221/15/03/C03053.
  • Cui, L.; Ren, X.; Sun, M.; Liu, H.; Xia, L. Carbon Dots: Synthesis, Properties and Applications. Nanomaterials. 2021, 11, 3419. 3419. DOI: 10.3390/nano11123419.
  • Atulbhai, S. V.; Singhal, R. K.; Basu, H.; Kailasa, S. K. Perspectives of Different Colour-Emissive Nanomaterials in Fluorescent Ink, LEDs, Cell Imaging, and Sensing of Various Analytes. Luminescence. 2023, 38, 867–895. DOI: 10.1002/bio.4272.
  • Godoy Junior, A.; Carlucci, F. G.; Gonçalves Leite, D. M.; Miyakawa, W.; Pereira, A. L. J.; Massi, M.; da Silva Sobrinho, A. S. Plasma Nanotexturing of Amorphous Carbon Films by Reactive Ion Etching. Surf. Coat. Technol. 2018, 354, 153–160. DOI: 10.1016/j.surfcoat.2018.09.024.
  • Torrisi, L.; Calcagno, L.; Fazio, B.; Cutroneo, M.; Torrisi, A.; Bruzzaniti, P. G.; Silipigni, L. Diamond‑like Carbon Generation from Graphene Oxide by Ion Irradiation. Appl. Phys. A. 2023, 129, 626. DOI: 10.1007/s00339-023-06904-7.
  • Torrisi, L.; Torrisi, A. Ni, Ti, and NiTi Laser Ablation in Vacuum and in Water to Deposit Thin Films or to Generate Nanoparticles in Solution. Contrib. Plasma Phys. 2020. 61, e202000070. DOI: 10.1002/ctpp.202000070.
  • Slepchenkov, M. M.; Gerasimenko, A. Y.; Kuksin, A. V.; Shaman, Y. P.; Shamanaev, A. A.; Sysa, A. V.; Lebedev, E. A.; Eganova, E. M.; Goryachev, A. V.; Pavlov, A. A.; Glukhova, O. E. Electrophysical Properties of Laser-Structured Carbon Nanomaterials Functionalized with LaB6 Nanoparticles. Diamond Relat. Mater. 2023, 140, 110512. DOI: 10.1016/j.diamond.2023.110512.
  • Yogesh, G. K.; Shuaib, E. P.; Priya, A. K.; Rohini, P.; Anandhan, S. V.; Krishnan, U. M.; Kalyanavalli, V.; Shukla, S.; Sastikumar, D. Synthesis of Water-Soluble Fluorescent Carbon Nanoparticles (CNPs) from Nanosecond Pulsed Laser Ablation in Ethanol. Optics and Laser Technology. 2021, 135, 106717. DOI: 10.1016/j.optlastec.2020.106717.
  • Shuaib, E. P.; Shafi, P. M.; Yogesh, G. K.; Bose, A. C.; Sastikumar, D. Carbon Nanoparticles Synthesized by Laser Ablation of Coconut Shell Charcoal in Liquids for Glucose Sensing Applications. Mater. Res. Express. 2019, 6, 115610. DOI: 10.1088/2053-1591/ab49d1.
  • Cutroneo, M.; Havranek, V.; Torrisi, L.; Silipigni, L.; Kovacik, L.; Malinsky, P.; Flaks, J.; Slepicka, P.; Fajstavr, D.; Janoušková, O.; et al. Nanoparticles Embedded in a Sponge of Polydimethylsiloxane by Laser Ablation in Liquid. EPJ Web Conf. 2022, 261, 02005. DOI: 10.1051/epjconf/202226102005.
  • Torrisi, L.; Silipigni, L.; Restuccia, N.; Cuzzocrea, S.; Cutroneo, M.; Barreca, F.; Fazio, B.; Di Marco, G.; Guglielmino, S. Laser-Generated Bismuth Nanoparticles for Applications in Imaging and Radiotherapy. J. Phys. Chem. Solids. 2018, 119, 62–70. DOI: 10.1016/j.jpcs.2018.03.034.
  • Torrisi, L.; Silipigni, L.; Torrisi, A.; Cutroneo, M. Luminescence in Laser-Generated Biocompatible Functionalized Carbon Dots. Optics and Laser Technology. 2024, in press, April 2024.
  • Medeiros, G. A.; da Silva Rodrigues, C. V.; Spencer, J.; Neto, B. A. D. Cap.7 - Carbon Dots (C-Dots): Fluorescence Processes and Bioimaging. In Henini, M.; Rodrigues, M.O., Quantum Materials, Devices, and Applications, Eds, Elsevier: Amsterdam, 2023; 201–213. DOI: 10.1016/B978-0-12-820566-2.00004-1.
  • Vadia, F. Y.; Mehta, V. N.; Jha, S.; Park, T. J.; Malek, N. I.; Kailasa, S. K. Development of Simple Fluorescence Analytical Strategy for the Detection of Triazophos Using Greenish-Yellow Emissive Carbon Dots Derived from Curcuma Longa. J. Fluoresc. 2023, 428, 136796. DOI: 10.1007/s10895-023-03548-x.
  • Tumuluru, J. S.; Hess, J. R.; Boardman, R. D.; Wright, C. T.; Westover, T. L. Formulation, Pretreatment, and Densification Options to Improve Biomass Specifications for Co-Firing High Percentages with Coal. Ind. Biotechnol. 2012, 8, 113–132. DOI: 10.1089/ind.2012.0004.
  • Siemons, R. V.; Baaijens, L. An Innovative Carbonisation Retort: Technology and Environmental Impact. Termotehnika. 2012, XXXVIII, 131–138. Corpus ID: 51813803.
  • Phosphate-buffered saline (PBS) recipe. CSH Protocol, actual website 2024: Phosphate-buffered saline (PBS) (cshlp.org.).
  • Sigma-Aldrich. phosphate buffer saline, actual website 2024: https://www.sigmaaldrich.com/IT/it/substance/phosphatebufferedsaline1234598765.
  • Wu, L.; Cai, X.; Nelson, K.; Xing, W.; Xia, J.; Zhang, R.; Stacy, A. J.; Luderer, M.; Lanza, G. M.; Wang, L. V.; et al. Agreen Synthesis of Carbon Nanoparticles from Honey and Their Use in Real-Time Photoacoustic Imaging. Nano Res. 2013, 6, 312–325. DOI: 10.1007/s12274-013-0308-8.
  • Thambiraj, S.; Ravi Shankaran, D. Green Synthesis of Highly Fluorescent Carbon Quantum Dots from Sugarcane Bagasse Pulp. Appl. Surf. Sci. 2016, 390, 435–443. DOI: 10.1016/j.apsusc.2016.08.106.
  • Yang, H. L.; Bai, L. F.; Geng, R.; Chen, H.; Xu, L. T.; Xie, Y. C.; Wang, D. J.; Gu, H. W.; Wang, X. M. Carbon Quantum Dots: Preparation, Optical Properties, and Biomedical Applications. Materials Today Advances. 2023, 18, 100376. 100376., DOI: 10.1016/j.mtadv.2023.100376.
  • Issa, M. A.; Abidin, Z. Z.; Sobri, S.; Rashid, S.; Mahdi, M. A.; Ibrahim, N. A.; Pudza, M. Y. Facile Synthesis of Nitrogen-Doped Carbon Dots from Lignocellulosic Waste. Nanomaterials. 2019, 9, 1500. DOI: 10.3390/nano9101500.
  • Yeh, T. F.; Huang, W. L.; Chung, C. J.; Chiang, I. T.; Chen, L. C.; Chang, H. Y.; Su, W. C.; Cheng, C.; Chen, S. J.; Teng, H. Elucidating Quantum Confinement in Graphene Oxide Dots Based on Excitation-Wavelength-Independent Photoluminescence. J. Phys. Chem. Lett. 2016, 7, 2087–2092. DOI: 10.1021/acs.jpclett.6b00752.
  • Ozyurt, D.; Al Kobaisi, M.; Hocking, R. K.; Fox, B. Properties, Synthesis, and Applications of Carbon Dots: A Review. Carbon Trends. 2023, 12, 100276. DOI: 10.1016/j.cartre.2023.100276.
  • Alkian, Ilham, Sutanto, Heri, Hadiyanto,; Hadiyanto, Quantum Yield Optimization of Carbon Dots Using Response Surface Methodology and Its Application as Control of Fe3 + Ion Levels in Drinking Water, Mater. Res. Express. 2022, 9, 015702, DOI: 10.1088/2053-1591/ac3f60.
  • Thermo Fisher Scientific. energy bindings, actual website 2024: Carbon. | XPS Periodic Table | Thermo Fisher Scientific - IT
  • Cheistry Libre Texts, Bond Energies. actual website 2024: Bond Energies - Chemistry LibreTexts.
  • Salinas-Castillo, A.; Ariza-Avidad, M.; Pritz, C.; Camprubí-Robles, M.; Fernández, B.; Ruedas-Rama, M. J.; Megia-Fernández, A.; Lapresta-Fernández, A.; Santoyo-Gonzalez, F.; Schrott-Fischer, A.; Capitan-Vallvey, L. F. Carbon Dots for Copper Detection with down and Upconversion Fluorescent Properties as Excitation Sources. Chem. Commun. 2013, 49, 1103–1105. DOI: 10.1039/c2cc36450f.
  • Yuan, C.; Liu, B.; Liu, F.; Han, M. Y.; Zhang, Z. Fluorescence “Turn On” Detection of Mercuric Ion Based on Bis(Dithiocarbamato)Copper(II) Complex Functionalized Carbon Nanodots. Anal. Chem. 2014, 86, 1123–1130. DOI: 10.1021/ac402894z.
  • Gao, X.; Ding, C.; Zhu, A.; Tian, Y. Carbon-Dot-Based Ratiometric Fluorescent Probe for Imaging and Biosensing of Superoxide Anion in Live Cells. Anal. Chem. 2014, 86, 7071–7078. DOI: 10.1021/ac501499y.
  • Wang, R.; Li, G.; Dong, Y.; Chi, Y.; Chen, G. Carbon Quantum Dot-Functionalized Aerogels for NO2 Gas Sensing. Anal. Chem. 2013, 85, 8065–8069. DOI: 10.1021/ac401880h.
  • Yu, C.; Li, X.; Zeng, F.; Zheng, F.; Wu, S. Carbon-Dot-Based Ratiometric Fluorescent Sensor for Detecting Hydrogen Sulfide in Aqueous Media and inside Live Cells. Chem. Commun. 2013, 49, 403–405. DOI: 10.1039/C2CC37329G.
  • Zhang, J.; Yu, S. H. Carbon Dots: Large-Scale Synthesis, Sensing and Bioimaging. Mater. Today. 2016, 19, 382–393. DOI: 10.1016/j.mattod.2015.11.008.
  • Lee, H. U.; Park, S. Y.; Park, E. S.; Son, B.; Lee, S. C.; Lee, J. W.; Lee, Y. C.; Kang, K. S.; Kim, M. I.; Park, H. G.; et al. Photoluminescent Carbon Nanotags from Harmful Cyanobacteria for Drug Delivery and Imaging in Cancer Cells. Sci. Rep. 2014, 4, 4665. DOI: 10.1038/srep04665.
  • Song, Y.; Shi, W.; Chen, W.; Li, X.; Ma, H. Fluorescent Carbon Nanodots Conjugated with Folic Acid for Distinguishing Folate-Receptor-Positive Cancer Cells from Normal Cells. J. Mater. Chem. 2012, 22, 12568–12573. DOI: 10.1039/c2jm31582c.
  • Lee, C. H.; Rajendran, R.; Jeong, M.-S.; Ko, H. Y.; Joo, J. Y.; Cho, S.; Chang, Y. W.; Kim, S. Bioimaging of Targeting Cancers Using Aptamer-Conjugated Carbon Nanodots. Chem. Commun. 2013, 49, 6543–6545. DOI: 10.1039/c3cc42752h.
  • Dubey, N.; Dhiman, S.; Koner, A. L. Review of Carbon Dot-Based Drug Conjugates for Cancer Therapy. ACS Appl. Nano Mater. 2023, 6, 4078–4096. DOI: 10.1021/acsanm.2c05407.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.