27
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Triple crossed 3 C26 cyclic cumulene catenane

Received 18 Apr 2024, Accepted 08 May 2024, Published online: 23 May 2024

References

  • Day, G. S.; Drake, H. F.; Zhou, H. C.; Ryder, M. R. Evolution of Porous Materials from Ancient Remedies to Modern Frameworks. Commun. Chem. 2021, 4, 114. DOI: 10.1038/s42004-021-00549-4.
  • Jäntschi, L. Nanoporous Carbon, Its Pharmaceutical Applications and Metal Organic Frameworks. J. Incl. Phenom. Macrocycl. Chem. 2023, 103, 245–261. DOI: 10.1007/s10847-023-01194-1.
  • Ebers, G.; Stern, L. C. Papyrus Ebers, Das Hermetische Buch üBer Die Arzneimittel Der Alten äGypter in Hieratischer Schrift; W. Engelmann: Leipzig, Germany, 1875. http://lccn.loc.gov/25012078.
  • Baker, M. N. The Quest for Pure Water; the History of Water Purification from the Earliest Records to the Twentieth Century; American Water Works Assn.: New York, USA, 1948. http://lccn.loc.gov/48010469.
  • Pollio, V. Primi Libri. Caput V: De Fundamentis Murorum & Turrium (Reprint). In De Architectura: De Architectura Libri Dece Traducti de Latino in Vulgare Affigurati, Comentati (Written between 30-20 BC); Research Publications: New Haven, Connecticut, USA, 1973; pp 17–21. http://lccn.loc.gov/83235048.
  • Juurlink, D. N. Activated Charcoal for Acute Overdose: A Reappraisal. Br. J. Clin. Pharmacol. 2016, 81, 482–487. DOI: 10.1111/bcp.12793.
  • Jäntschi, L. General Chemistry, 3 ed.; AcademicDirect: Cluj-Napoca, Romania, 2013. http://ph.academicdirect.org/GCC_v3.pdf.
  • Hoffmann, R.; Kabanov, A. A.; Golov, A. A.; Proserpio, D. M. Homo Citans and Carbon Allotropes: For an Ethics of Citation. Angew. Chem. Int. Ed. Engl. 2016, 55, 10962–10976. DOI: 10.1002/anie.201600655.
  • Shirakawa, H. The Discovery of Polyacetylene Film: The Dawning of an Era of Conducting Polymers. Nobel Lecture, 2000. http://nobelprize.org/prizes/chemistry/2000/shirakawa/lecture/.
  • McCarthy, M. C.; Chen, W.; Travers, M. J.; Thaddeus, P. Microwave Spectra of 11 Polyyne Carbon Chains. Astrophys. J. Suppl. S. 2000, 129, 611–623. DOI: 10.1086/313428.
  • Kivala, M.; Mitzel, F.; Boudon, C.; Gisselbrecht, J. P.; Seiler, P.; Gross, M.; Diederich, F. TwoDimensional Acetylenic Scaffolding: Extended Donor-Substituted Perethynylated Dehydroannulenes. Chem. Asian J. 2006, 1, 479–489. DOI: 10.1002/asia.200600131.
  • Hirao, Y.; Daifuku, Y.; Ihara, K.; Kubo, T. Spin–Spin Interactions in One-Dimensional Assemblies of a Cumulene-Based Singlet Biradical. Angew. Chem. Int. Ed. Engl. 2021, 60, 21319–21326. DOI: 10.1002/anie.202105740.
  • Pinter, P.; Munz, D. Controlling Möbius-Type Helicity and the Excited-State Properties of Cumulenes with Carbenes. J. Phys. Chem. A. 2020, 124, 10100–10110. DOI: 10.1021/acs.jpca.0c07940.
  • Hoshi, K.; Yasuda, M.; Nakamura, T.; Yoshida, Y.; Ueta, S.; Minagawa, K.; Kawamura, Y.; Imada, Y.; Yagishita, F. Unexpected Formation of Poly-Functionalized Fulvenes by the Reaction of a Tetraaryl[5]Cumulene with Iodine. Org. Biomol. Chem. 2021, 19, 7594–7597. DOI: 10.1039/D1OB01270C.
  • Martín-Fuentes, C.; Urgel, J. I.; Edalatmanesh, S.; Rodríguez-Sánchez, E.; Santos, J.; Mutombo, P.; Biswas, K.; Lauwaet, K.; Gallego, J. M.; Miranda, R.; et al. Cumulene-like Bridged Indeno[1,2b]Fluorene π-Conjugated Polymers Synthesized on Metal Surfaces. Chem. Commun. (Camb). 2021, 57, 7545–7548. DOI: 10.1039/D1CC02058G.
  • de la Torre, B.; Matěj, A.; Sánchez-Grande, A.; Cirera, B.; Mallada, B.; Rodríguez-Sánchez, E.; Santos, J.; Mendieta-Moreno, J. I.; Edalatmanesh, S.; Lauwaet, K.; et al. Tailoring π-Conjugation and Vibrational Modes to Steer on-Surface Synthesis of Pentalene-Bridged Ladder Polymers. Nat. Commun. 2020, 11, 4567. DOI: 10.1038/s41467-020-18371-2.
  • Zhu, J.; Yang, W.; Zhang, C.; Wu, L. Recent Progress in the Synthesis of Dendralenes: A Decade Update. Chin. J. Org. Chem. 2021, 41, 1081. DOI: 10.6023/cjoc202008024.
  • Garner, M. H.; Corminboeuf, C. Correlation between Optical Activity and the Helical Molecular Orbitals of Allene and Cumulenes. Org. Lett. 2020, 22, 8028–8033. DOI: 10.1021/acs.orglett.0c02980.
  • Melis, C.; Fugallo, G.; Colombo, L. Room Temperature Second Sound in Cumulene. Phys. Chem. Chem. Phys. 2021, 23, 15275–15281. DOI: 10.1039/D1CP00501D.
  • Romanin, D.; Monacelli, L.; Bianco, R.; Errea, I.; Mauri, F.; Calandra, M. Dominant Role of Quantum Anharmonicity in the Stability and Optical Properties of Infinite Linear Acetylenic Carbon Chains. J. Phys. Chem. Lett. 2021, 12, 10339–10345. DOI: 10.1021/acs.jpclett.1c02964.
  • Scaccabarozzi, A. D.; Milani, A.; Peggiani, S.; Pecorario, S.; Sun, B.; Tykwinski, R. R.; Caironi, M.; Casari, C. S. A Field-Effect Transistor Based on Cumulenic sp-Carbon Atomic Wires. J. Phys. Chem. Lett. 2020, 11, 1970–1974. DOI: 10.1021/acs.jpclett.0c00141.
  • Xing, H.; Azizi, A.; Momen, R.; Xu, T.; Kirk, S. R.; Jenkins, S. Chirality–Helicity of Cumulenes: A Non-Scalar Charge Density Derived Perspective. Int. J. Quantum Chem. 2022, 122, e26884. DOI: 10.1002/qua.26884.
  • Luzanov, A. V. Conductance Length Dependence in Carbon-Conjugated Nanoscale Systems. Use of Extended Quasi-Correlated Orbitals. In Proceedings of the Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications; Fesenko, O.; Yatsenko, L., Eds.; Springer International Publishing: Cham, 2021; pp 587–605. DOI: 10.1007/978-3-030-51905-641.
  • Sadlej-Sosnowska, N.; Ocios-Bębenek, A.; Dobrowolski, J. C.; Boczar, D. Geometrical, Electrical, and Energetic Parameters of Hetero-Disubstituted Cumulenes and Polyynes in the Presence and Absence of the External Electric Field. Struct. Chem. 2022, 33, 479–490. DOI: 10.1007/s11224-021-01858-z.
  • Zang, Y.; Zou, Q.; Fu, T.; Ng, F.; Fowler, B.; Yang, J.; Li, H.; Steigerwald, M. L.; Nuckolls, C.; Venkataraman, L. Directing Isomerization Reactions of Cumulenes with Electric Fields. Nat. Commun. 2019, 10, 4482. DOI: 10.1038/s41467-019-12487-w.
  • Shil, S.; Sen, S. Cobaltocene-Coupled Cumulene: A Perspective on Chiral Magnet and Spintronics Device Design. Inorg. Chem. 2020, 59, 16905–16912. DOI: 10.1021/acs.inorgchem.0c01825.
  • Mölder, U.; Burk, P.; Koppel, I. Quantum Chemical Calculations of Linear Cumulene Chains. J. Molecular Struct. Ttheochem. 2004, 712, 81–89. DOI: 10.1016/j.theochem.2004.10.005.
  • Pecorario, S.; Scaccabarozzi, A. D.; Fazzi, D.; Gutiérrez-Fernández, E.; Vurro, V.; Maserati, L.; Jiang, M.; Losi, T.; Sun, B.; Tykwinski, R. R.; et al. Stable and Solution-Processable Cumulenic sp-Carbon Wires: A New Paradigm for Organic Electronics. Adv. Mater. 2022, 34, e2110468. DOI: 10.1002/adma.202110468.
  • Zang, Y.; Fu, T.; Zou, Q.; Ng, F.; Li, H.; Steigerwald, M. L.; Nuckolls, C.; Venkataraman, L. Cumulene Wires Display Increasing Conductance with Increasing Length. Nano Lett. 2020, 20, 8415–8419. DOI: 10.1021/acs.nanolett.0c03794.
  • Ardila-Fierro, K. J.; Bolm, C.; Hernández, J. G. Mechanosynthesis of Odd-Numbered Tetraaryl[n]Cumulenes. Angew. Chem. Int. Ed. Engl. 2019, 58, 12945–12949. DOI: 10.1002/anie.201905670.
  • Scriven, L. M.; Kaiser, K.; Schulz, F.; Sterling, A. J.; Woltering, S. L.; Gawel, P.; Christensen, K. E.; Anderson, H. L.; Gross, L. Synthesis of Cyclo[18]Carbon via Debromination of C18Br6. J. Am. Chem. Soc. 2020, 142, 12921–12924. DOI: 10.1021/jacs.0c05033.
  • Barquera-Lozada, J. E. How to Bend a Cumulene. Chemistry. 2020, 26, 4633–4639. DOI: 10.1002/chem.202000025.
  • Konishi, A.; Imai, S.; Satake, S.; Chiba, K.; Yasuda, M. Synthesis and Characterization of Hexafluorocyclopentane-Bridged Bisbutatrienes as Models for Longer Cumulenes: Various Transformations for the Construction of π-Conjugated Frameworks. Chemistry. 2023, 29, e202301255. DOI: 10.1002/chem.202301255.
  • Liu, J. W.; Wang, Y.; Kang, L. X.; Zhao, Y.; Xing, G. Y.; Huang, Z. Y.; Zhu, Y. C.; Li, D. Y.; Liu, P. N. Two-Dimensional Crystal Transition from Radialene to Cumulene on Ag(111) via Retro-[2 + 1] Cycloaddition. J. Am. Chem. Soc. 2023, 145, 13048–13058. DOI: 10.1021/jacs.3c00962.
  • Cabezas, C.; Tercero, B.; Agúndez, M.; Marcelino, N.; Pardo, J. R.; de Vicente, P.; Cernicharo, J. Cumulene Carbenes in TMC-1: Astronomical Discovery of l-H2C5. A&A. 2021, 650, L9. DOI: 10.1051/0004-6361/202141274.
  • Balakrishnan, A.; Shankar, R.; Vijayakumar, S. DFT Approach on Stability and Conductance of Nine Different Polyyne and Cumulene Molecules. Mol. Phys. 2020, 118, e1601785. DOI: 10.1080/00268976.2019.1601785.
  • Brémond, E.; Pérez-Jiménez, A. J.; Adamo, C.; Sancho-García, J. C. Stability of the Polyynic Form of C18, C22, C26, and C30 Nanorings: A Challenge Tackled by Range-Separated Double-Hybrid Density Functionals. Phys. Chem. Chem. Phys. 2022, 24, 4515–4525. DOI: 10.1039/D1CP04996H.
  • Safarowsky, O.; Windisch, B.; Mohry, A.; Vögtle, F. Nomenclature for Catenanes, Rotaxanes, Molecular Knots, and Assemblies Derived from These Structural Elements. J. Prakt. Chem. 2000, 342, 437–444. DOI: 10.1002/1521-3897(200006)342:5¡437::AID-PRAC437¿3.0.CO;2-7.
  • Stoenoiu, C. E.; Putz, M. V.; Jäntschi, L. Is Triple Crossed C28 Cyclic Polyyne Cluster a Stable Conformation? Fuller. Nanotub. Carbon Nanostruct. 2023, 32, 55–67. DOI: 10.1080/1536383X.2023.2261573.
  • Jäntschi, L.; Bolboacă, S. D. Conformational Study of C24 Cyclic Polyyne Clusters. Int. J. Quantum Chem. 2018, 118, e25614. DOI: 10.1002/qua.25614.
  • Niu, Z.; Gibson, H. W. Polycatenanes. Chem. Rev. 2009, 109, 6024–6046. DOI: 10.1021/cr900002h.
  • Schrödinger, E. An Undulatory Theory of the Mechanics of Atoms and Molecules. Phys. Rev. 1926, 28, 1049–1070. DOI: 10.1103/PhysRev.28.1049.
  • Born, M.; Oppenheimer, R. Zur Quantentheorie Der Molekeln. Ann. Phys. 1927, 389, 457–484. DOI: 10.1002/andp.19273892002.
  • Balàzs, N. L. Formation of Stable Molecules within the Statistical Theory of Atoms. Phys. Rev. 1967, 156, 42–47. DOI: 10.1103/PhysRev.156.42.
  • Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 1935, 47, 777–780. DOI: 10.1103/PhysRev.47.777.
  • Bohr, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 1935, 48, 696–702. DOI: 10.1103/PhysRev.48.696.
  • Hartree, D. R. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods. Math. Proc. Camb. Phil. Soc. 1928, 24, 89–110. DOI: 10.1017/S0305004100011919.
  • Hartree, D. R. The Wave Mechanics of an Atom with a non-Coulomb Central Field. Part II. Some Results and Discussion. Math. Proc. Camb. Phil. Soc. 1928, 24, 111–132. DOI: 10.1017/S0305004100011920.
  • Fock, V. Näherungsmethode Zur Lösung Des Quantenmechanischen Mehrkörperproblems. Z. Phys. 1930, 61, 126–148. DOI: 10.1007/BF01340294.
  • Fock, V. Selfconsistent Field” Mit Austausch für Natrium. Z. Phys. 1930, 62, 795–805. DOI: 10.1007/BF01330439.
  • Slater, J. C. The Theory of Complex Spectra. Phys. Rev. 1929, 34, 1293–1322. DOI: 10.1103/Phys-Rev.34.1293.
  • Littlewood, D. E.; Richardson, A. R.; Turnbull, H. W. Group Characters and Algebra. Philos. Trans. Roy. Soc. London A. 1934, 233, 99–141. DOI: 10.1098/rsta.1934.0015.
  • Slater, J. C. Atomic Shielding Constants. Phys. Rev. 1930, 36, 57–64. DOI: 10.1103/PhysRev.36.57.
  • Hehre, W. J.; Stewart, R. F.; Pople, J. A. Self-Consistent Molecular-Orbital Methods. I. Use of Gaussian Expansions of Slater-Type Atomic Orbitals. J. Chem. Phys. 1969, 51, 2657–2664. DOI: 10.1063/1.1672392.
  • Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. DOI: 10.1103/PhysRev.136.B864.
  • Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. DOI: 10.1103/PhysRev.140.A1133.
  • Hu, Y.; Murthy, G.; Rao, S.; Jain, J. K. Kohn-Sham Density Functional Theory of Abelian Anyons. Phys. Rev. B. 2021, 103, 035124. DOI: 10.1103/PhysRevB.103.035124.
  • Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A. 1988, 38, 3098–3100. DOI: 10.1103/PhysRevA.38.3098.
  • Perdew, J. P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas. Phys. Rev. B Condens. Matter. 1986, 33, 8822–8824. DOI: 10.1103/PhysRevB.33.8822.
  • Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B Condens. Matter. 1988, 37, 785–789. DOI: 10.1103/PhysRevB.37.785.
  • Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. DOI: 10.1063/1.464913.
  • Stephens, P. J.; Devlin, F. J.; Ashvar, C. S.; Chabalowski, C. F.; Frisch, M. J. Theoretical Calculation of Vibrational Circular Dichroism Spectra. Faraday Disc. 1994, 99, 103–119. DOI: 10.1039/fd9949900103.
  • Rothenberg, S.; Schaefer, H. F. III. Methane as a Numerical Experiment for Polarization Basis Function Selection. J. Chem. Phys. 2003, 54, 2764–2766. DOI: 10.1063/1.1675248.
  • Lynch, B. J.; Zhao, Y.; Truhlar, D. G. Effectiveness of Diffuse Basis Functions for Calculating Relative Energies by Density Functional Theory. J. Phys. Chem. A. 2003, 107, 1384–1388. DOI: 10.1021/jp021590l.
  • Wolinski, K.; Hinton, J. F.; Pulay, P. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. J. Am. Chem. Soc. 1990, 112, 8251–8260. DOI: 10.1021/ja00179a005.
  • Almlöf, J.; Taylor, P. R. General Contraction of Gaussian Basis Sets. I. Atomic Natural Orbitals for First and Second-Row Atoms. J. Chem. Phys. 1987, 86, 4070–4077. DOI: 10.1063/1.451917.
  • Liu, J.; Fan, Y.; Li, Z.; Yang, J. Quantum Algorithms for Electronic Structures: Basis Sets and Boundary Conditions. Chem. Soc. Rev. 2022, 51, 3263–3279. DOI: 10.1039/D1CS01184G.
  • Jäntschi, L.; 2. Energetics of C8B8N8, N12B12, and C24 Macrocycles and Two [4]Catenanes. Foundations. 2022, 2, 781–797. DOI: 10.3390/foundations2030053.
  • Bolboaca, S. D.; Marta, M. M.; Stoenoiu, C. E.; Jäntschi, L. Molecular Descriptors Family on Vertex Cutting: Relationships between Acelazolamide Structures and Their Inhibitory Activity. Appl. Med. Inform. 2011, 25, 65–74.
  • Sestraş, R.; Jantschi, L.; Bolboacă, S. Quantum Mechanics Study on a Series of Steroids Relating Separation with Structure. JPC J. Planar Chromat. 2012, 25, 528–533. DOI: 10.1556/jpc.25.2012.6.7.
  • Bálint, D.; Jäntschi, L. Comparison of Molecular Geometry Optimization Methods Based on Molecular Descriptors. Mathematics. 2021, 9, 2855. DOI: 10.3390/math9222855.
  • Avdoshenko, S. M.; Konda, S. S. M.; Makarov, D. E. On the Calculation of Internal Forces in Mechanically Stressed Polyatomic Molecules. J. Chem. Phys. 2014, 141, 134115. DOI: 10.1063/1.4896944.
  • Johnson, III, R.; D. All Results from a Given Calculation for H2 (Hydrogen Diatomic) Using Model Chemistry: BLYP/6-311G*. NIST Stand. Ref. Database. 2022, 101. http://cccbdb.nist.gov/energy3x.asp?method=13&basis=7&charge=0.
  • Cheng, G.; Gong, X. G.; Yin, W. J. Crystal Structure Prediction by Combining Graph Network and Optimization Algorithm. Nat. Commun. 2022, 13, 1492. DOI: 10.1038/s41467-022-29241-4.
  • Overend, J.; Scherer, J. Transferability of Urey-Bradley Force Constants. I. Calculation of Force Constants on a Digital Computer. J. Chem. Phys. 1960, 32, 1289–1295. DOI: 10.1063/1.1730911.
  • de Celles, M.; Darling, B. T. On the Kinetic Energy Operator and the General Triatomic Molecule. J. Mol. Spectrosc. 1969, 29, 66–83. DOI: 10.1016/0022-2852(69)90084-8.
  • Gaussian Software. Constructing Z-Matrices, 2017. http://gaussian.com/zmat/
  • Gaussian Software. Specifying Generalized Internal Coordinates, 2020. http://gaussian.com/GIC/ (accessed Mar 18, 2024)
  • Baker, J. Techniques for Geometry Optimization: A Comparison of Cartesian and Natural Internal Coordinates. J. Comput. Chem. 1993, 14, 1085–1100. DOI: 10.1002/jcc.540140910.
  • Patrick, C. W.; Gao, Y.; Gupta, P.; Thompson, A. L.; Parker, A. W.; Anderson, H. L. Masked Alkynes for Synthesis of Threaded Carbon Chains. Nat. Chem. 2024, 16, 193–200. DOI: 10.1038/s41557-023-01374-z.
  • Johnson, III, R.; D. Experimental Data for H2CCCH2 (Allene). NIST Stand. Ref. Database. 2022, 101. http://cccbdb.nist.gov/exp2x.asp?casno=463490.
  • Johnson, R. D. III. “Calculated Geometries available for …” Calculated Frequencies for …” Vibrational Zero-Point Energies for …”, and” Entropy and Integrated heat capacity at a given temperature details”. NIST Standard Reference Database, 101, 2022. https://cccbdb.nist.gov/geom2x.asp. (to be used with the selected molecule), https://cccbdb.nist.gov/vibs2x.asp. (to be used with the selected molecule), http://cccbdb.nist.gov/zpe2x.asp. (to be used with the selected molecule), and http://cccbdb.nist.gov/sanyt4x.asp?method=&basis=. (to be used with the selected molecule, method and basis set).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.