27
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Calculated isomeric populations of Er@C82

, , , , &
Received 26 Apr 2024, Accepted 30 Apr 2024, Published online: 31 May 2024

References

  • Ye, X.; Yu, P.; Shen, W.; Hu, S.; Akasaka, T.; Lu, X. Er@C82 as a Bifunctional Additive to the spiro-OMeTAD Hole Transport Layer for Improving Performance and Stability of Perovskite Solar Cells. Sol. RRL 2021, 5, 2100463.
  • Yang, S.; Fan, L.; Yang, S. Preparation, Characterization, and Photoelectrochemistry of Langmuir Blodgett Films of the Endohedral Metallofullerene Dy@C82 Mixed with Metallophthalocyanines. J. Phys. Chem. B 2003, 107, 8403–8411. DOI: 10.1021/jp035107y.
  • Yang, S.; Fan, L.; Yang, S. Langmuir Blodgett Films of Poly(3-Hexylthiophene) Doped with the Endohedral Metallofullerene Dy@C82: Preparation, Characterization, and Application in Photoelectrochemical Cells. J. Phys. Chem. B 2004, 108, 4394–4404. DOI: 10.1021/jp0375618.
  • Katz, E. A. Fullerene Thin Films as Photovoltaic Material. In Nanostructured Materials for Solar Energy Conversion, Soga, T., Ed., Elsevier: Amsterdam, 2006, pp. 361–443.
  • Tagmatarchis, N.; Aslanis, E.; Shinohara, H.; Prassides, K. Isolation and Spectroscopic Study of a Series of Mono- and Dierbium Endohedral C82 and C84 Metallofullerenes. J. Phys. Chem. B 2000, 104, 11010–11012. DOI: 10.1021/jp001498u.
  • Sanakis, Y.; Tagmatarchis, N.; Aslanis, E.; Ioannidis, N.; Petrouleas, V.; Shinohara, H.; Prassides, K. Dual-Mode X-Band EPR Study of Two Isomers of the Endohedral Metallofullerene Er@C82. J. Am. Chem. Soc. 2001, 123, 9924–9925. DOI: 10.1021/ja016636n.
  • Tagmatarchis, N.; Aslanis, E.; Prassides, K.; Shinohara, H. Mono-, di- and Trierbium Endohedral Metallofullerenes: Production, Separation, Isolation, and Spectroscopic Study. Chem. Mater. 2001, 13, 2374–2379. DOI: 10.1021/cm000955g.
  • Hu, S.; Liu, T.; Shen, W.; Slanina, Z.; Akasaka, T.; Xie, Y.; Uhlik, F.; Huang, W.; Lu, X. Isolation and Structural Characterization of Er@C2v (9)-82 and Er@Cs(6)-82: Regioselective Dimerization of a Pristine Endohedral Metallofullerene Induced by Cage Symmetry. Inorg. Chem 2019, 58, 2177–2182. DOI: 10.1021/acs.inorgchem.8b03313.
  • Slanina, Z.; Uhlík, F.; Feng, L.; Adamowicz, L. Calculated Relative Populations of Sm@C82 Isomers. Fulleren. Nanotub. Carb. Nanostruct. 2018, 26, 233–238.
  • Slanina, Z.; Lee, S.-L.; Kobayashi, K.; Nagase, S. AM1 Computed Thermal Effects within the Nine Isolated-Pentagon-Rule Isomers of C82. J. Mol. Struct. (Theochem.) 1995, 339, 89–93.
  • Nishibori, E.; Takata, M.; Sakata, M.; Inakuma, M.; Shinohara, H. Determination of the Cage Structure of Sc@C82 by Synchrotron Powder Diffraction. Chem. Phys. Lett. 1998, 298, 79–84. DOI: 10.1016/S0009-2614(98)01133-6.
  • Slanina, Z.; Kobayashi, K.; Nagase, S. Ca@C82 Isomers: Computed Temperature Dependency of Relative Concentrations. J. Chem. Phys. 2004, 120, 3397–3400. DOI: 10.1063/1.1641004.
  • Slanina, Z.; Kobayashi, K.; Nagase, S. Computed Temperature Development of the Relative Stabilities of La@C82 Isomers. Chem. Phys. Lett. 2004, 388, 74–78. DOI: 10.1016/j.cplett.2004.02.066.
  • Suzuki, M.; Slanina, Z.; Mizorogi, N.; Lu, X.; Nagase, S.; Olmstead, M. M.; Balch, A. L.; Akasaka, T. Single-Crystal X-Ray Diffraction Study of Three Yb@C-82 Isomers Cocrystallized with Ni-II(Octaethylporphyrin). J. Am. Chem. Soc. 2012, 134, 18772–18778. DOI: 10.1021/ja308706d.
  • Slanina, Z.; Uhlík, F.; Lee, S.-L.; Suzuki, M.; Lu, X.; Mizorogi, N.; Nagase, S.; Akasaka, T. Calculated Temperature Development of the Relative Stabilities of Yb@C82 Isomers. Fulleren. Nanotub. Carb. Nanostruct. 2014, 22, 147–154.
  • Hu, Z.; Hao, Y.; Slanina, Z.; Gu, Z.; Shi, Z.; Uhlík, F.; Zhao, Y.; Feng, L. Popular C82 Fullerene Cage Encapsulating a Divalent Metal Ion Sm 2+: Structure and Electrochemistry. Inorg. Chem. 2015, 54, 2103–2108. DOI: 10.1021/ic5021884.
  • Slanina, Z.; Lee, S.-L.; Adamowicz, L. C80, C86, C88: Semiempirical and ab Initio SCF Calculations. Int. J. Quantum. Chem. 1997, 63, 529–535.
  • Slanina, Z.; Uhlik, F. Temperature Dependence of the Gibbs Energy Ordering of Isomers of Cl2O2. J. Phys. Chem. 1991, 95, 5432–5434. DOI: 10.1021/j100167a017.
  • Slanina, Z.; Zhao, X.; Lee, S.-L.; Ōsawa, E. C90 - Temperature Effects on Relative Stabilities of the IPR Isomers. Chem. Phys. 1997, 219, 193–200.
  • Uhlík, F.; Slanina, Z.; Ōsawa, E. C78 IPR Fullerenes: Computed B3LYP/6-31G*//HF/3-21G Temperature-Dependent Relative Concentrations. Eur. Phys. J. D. 2001, 16, 349–352. DOI: 10.1007/s100530170127.
  • Slanina, Z.; Zhao, X.; Uhlík, F.; Lee, S.-L.; Adamowicz, L. Computing Enthalpy-Entropy Interplay for Isomeric Fullerenes. Int. J. Quantum Chem. 2004, 99, 640–653.
  • Slanina, Z.; Lee, S.-L.; Adamowicz, L.; Uhlík, F.; Nagase, S. Computed Structure and Energetics of La@C60. Int. J. Quantum Chem 2005, 104, 272–277.
  • Slanina, Z.; Lee, S.-L.; Uhlík, F.; Adamowicz, L.; Nagase, S. Computing Relative Stabilities of Metallofullerenes by Gibbs Energy Treatments. Theor. Chem. Acc. 2007, 117, 315–322. DOI: 10.1007/s00214-006-0150-0.
  • Wang, Y.; Morales-Martínez, R.; Zhang, X.; Yang, W.; Wang, Y.; Rodríguez-Fortea, A.; Poblet, J. M.; Feng, L.; Wang, S.; Chen, N. Unique Four-Electron Metal-to-Cage Charge Transfer of Th to a C82 Fullerene Cage: Complete Structural Characterization of Th@C 3v (8)-C82. J. Am. Chem. Soc. 2017, 139, 5110–5116. DOI: 10.1021/jacs.6b13383.
  • Slanina, Z.; Uhlík, F.; Nagase, S.; Akasaka, T.; Adamowicz, L.; Lu, X. Eu@C72: Computed Comparable Populations of Two non-IPR Isomers. Molecules 2017, 22, 1053. DOI: 10.3390/molecules22071053.
  • Zhao, Y.; Li, M.; Zhao, R.; Zhao, P.; Yuan, K.; Li, Q.; Zhao, X. Unmasking the Optimal Isomers of Ti2C84: Ti2C2@C82 instead of Ti2C84. J. Phys. Chem. C 2018, 122, 13148–13155. DOI: 10.1021/acs.jpcc.8b02192.
  • Binkley, J. S.; Pople, J. A.; Hehre, W. J. Self-Consistent Molecular Orbital Methods. 21. Small Split-Valence Basis Sets for First-Row Elements. J. Am. Chem. Soc. 1980, 102, 939–947. DOI: 10.1021/ja00523a008.
  • Cao, X. Y.; Dolg, M. Segmented Contraction Scheme for Small-Core Lanthanide Pseudopotential Basis Sets. J. Mol. Struct. (Theochem.) 2002, 581, 139–147.
  • Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. DOI: 10.1063/1.464913.
  • Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B Condens. Matter 1988, 37, 785–789. DOI: 10.1103/physrevb.37.785.
  • Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self-Consistent Molecular Orbital Methods. 12. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular-Orbital Studies of Organic-Molecules. J. Chem. Phys. 1972, 56, 2257–2261. DOI: 10.1063/1.1677527.
  • Schlegel, H. B.; McDouall, J. J. W. Do You Have SCF Stability and Convergence Problems?. In Computational Advances in Organic Chemistry, Ögretir, C.; Csizmadia, I. G., Eds. Kluwer: Dordrecht, 1991, pp. 167–185
  • Slanina, Z.; Uhlík, F.; Adamowicz, L. Computations of Model Narrow Nanotubes Closed by Fragments of Smaller Fullerenes and Quasi-Fullerenes. J. Mol. Graph. Mod. 2003, 21, 517–522.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A., Jr.; et al. 2013. Gaussian 09, Rev. C.01, Wallingford, CT, Gaussian Inc.
  • Slanina, Z. Equilibrium Isomeric Mixtures: Potential Energy Hypersurfaces as Originators of the Description of the Overall Thermodynamics and Kinetics. Int. Rev. Phys. Chem. 1987, 6, 251–267.
  • Slanina, Z. A Program for Determination of Composition and Thermodynamics of the Ideal Gas-Phase Equilibrium Isomeric Mixtures. Comput. Chem. 1989, 13, 305–311. DOI: 10.1016/0097-8485(89)80037-3.
  • Slanina, Z.; Uhlík, F.; Zerner, M. C. C5H 3+ Isomeric Structures: Relative Stabilities at High Temperatures. Rev. Roum. Chim. 1991, 36, 965–974.
  • Slanina, Z.; Adamowicz, L. On Relative Stabilities of Dodecahedron-Shaped and Bowl-Shaped Structures of C20. Thermochim. Acta 1992, 205, 299–306.
  • Cross, R. J.; Saunders, M. Transmutation of Fullerenes. J. Am. Chem. Soc. 2005, 127, 3044–3047. DOI: 10.1021/ja045521r.
  • Slanina, Z.; Adamowicz, L.; Kobayashi, K.; Nagase, S. Gibbs Energy-Based Treatment of Metallofullerenes: Ca@C72, Ca@C74, Ca@C82, and La@C82. Mol. Simul. 2005, 31, 71–77.
  • Akasaka, T.; Nagase, S.; Kobayashi, K.; Walchli, M.; Yamamoto, K.; Funasaka, H.; Kako, M.; Hoshino, T.; Erata, T. 13C and 139La NMR Studies of La2@C80: First Evidence for Circular Motion of Metal Atoms in Endohedral Dimetallofullerenes. Angew. Chem. Int. Ed. 1997, 36, 1643–1645.
  • Kobayashi, K.; Nagase, S.; Maeda, Y.; Wakahara, T.; Akasaka, T. La2@C80: Is the Circular Motion of Two La Atoms Controllable by Exohedral Addition? Chem. Phys. Lett. 2003, 374, 562–566. DOI: 10.1016/S0009-2614(03)00750-4.
  • Slanina, Z. Contemporary Theory of Chemical Isomerism. Academia and D. Reidel Publ. Comp.: Prague and Dordrecht, 1986, pp. 21–23
  • Slanina, Z.; Uhlík, F.; Bao, L.; Akasaka, T.; Lu, X.; Adamowicz, L. Calculated Relative Populations for the Eu@C82 Isomers. Chem. Phys. Lett. 2019, 726, 29–33. DOI: 10.1016/j.cplett.2019.04.011.
  • Takata, M.; Nishibori, E.; Sakata, M.; Shinohara, H. Charge Density Level Structures of Endohedral Metallofullerenes Determined by Synchrotron Radiation Powder Method. New Diam. Front. Carb. Technol. 2002, 12, 271–286.
  • Hehre, W. J. A Guide to Molecular Mechanics and Quantum Chemical Calculations. Wavefunction: Irvine, 2003, p.435
  • Jensen, F. Introduction to Computational Chemistry. Wiley: Chichester, 2017, p.319
  • Campanera, J. M.; Bo, C.; Poblet, J. M. General Rule for the Stabilization of Fullerene Cages Encapsulating Trimetallic Nitride Templates. Angew. Chem. Int. Ed. Engl. 2005, 44, 7230–7233. DOI: 10.1002/anie.200501791.
  • Slanina, Z.; Uhlík, F.; Pan, C.; Akasaka, T.; Lu, X.; Adamowicz, L. Computed Stabilization for a Giant Fullerene Endohedral: Y2C2@C1(1660)-C108. Chem. Phys. Lett. 2018, 710, 147–149. DOI: 10.1016/j.cplett.2018.08.051.
  • Slanina, Z.; Uhlík, F.; Lee, S.-L.; Nagase, S. Structural and Bonding Features of Z@C82 (Z = Al, Sc, Y, La) Endohedrals. J. Comput. Methods Sci. En. 2010, 10, 569–574.
  • Slanina, Z.; Uhlík, F.; Shen, W.; Akasaka, T.; Lu, X.; Adamowicz, L. Calculations of the Relative Populations of Lu@C82 Isomers. Fulleren. Nanotub. Carb. Nanostruct. 2019, 27, 710–714.
  • Slanina, Z.; Uhlík, F.; Akasaka, T.; Lu, X.; Adamowicz, L. Calculated Relative Thermodynamic Stabilities of the Gd@C82 Isomers. ECS J. Solid State Sci. Technol. 2021, 10, 071013. DOI: 10.1149/2162-8777/ac1382.
  • Meng, Q. Y.; Morales-Martínez, R.; Zhuang, J. X.; Yao, Y. R.; Wang, Y. F.; Feng, L.; Poblet, J. M.; Rodríguez-Fortea, A.; Chen, N. Synthesis and Characterization of Two Isomers of Th@C82: Th@C 2v (9)-C82 and Th@C2(5)-C82. Inorg. Chem. 2021, 60, 11496–11502. DOI: 10.1021/acs.inorgchem.1c01496.
  • Slanina, Z.; Uhlík, F.; Feng, L.; Adamowicz, L. Ho@C82 Metallofullerene: Calculated Isomeric Composition. ECS J. Solid State Sci. Technol. 2022, 11, 053018. DOI: 10.1149/2162-8777/ac6d0f.
  • Andreoni, W.; Curioni, A. Freedom and Constraints of a Metal Atom Encapsulated in Fullerene Cages. Phys. Rev. Lett. 1996, 77, 834–837. DOI: 10.1103/PhysRevLett.77.834.
  • Popov, A. A.; Dunsch, L. Bonding in Endohedral Metallofullerenes as Studied by Quantum Theory of Atoms in Molecules. Chemistry 2009, 15, 9707–9729. DOI: 10.1002/chem.200901045.
  • Slanina, Z.; Uhlík, F.; Lee, S.-L.; Adamowicz, L.; Akasaka, T.; Nagase, S. Computed Stabilities in Metallofullerene Series: Al@C82, Sc@C82, Y@C82, and La@C82. Int. J. Quant. Chem. 2011, 111, 2712–2718.
  • Rodríguez-Fortea, A.; Balch, A. L.; Poblet, J. M. Endohedral Metallofullerenes: A Unique Host-Guest Association. Chem. Soc. Rev. 2011, 40, 3551–3563. DOI: 10.1039/c0cs00225a.
  • Popov, A. A.; Yang, S.; Dunsch, L. Endohedral Fullerenes. Chem. Rev. 2013, 113, 5989–6113. DOI: 10.1021/cr300297r.
  • Yang, H.; Yu, M.; Jin, H.; Liu, Z.; Yao, M.; Liu, B.; Olmstead, M. M.; Balch, A. L. Isolation of Three Isomers of Sm@C84 and X-Ray Crystallographic Characterization of Sm@D3d (19)-84 and Sm@C2(13)-C84. J. Am. Chem. Soc. 2012, 134, 5331–5338. DOI: 10.1021/ja211785u.
  • Slanina, Z.; Zhao, X.; Uhlík, F.; Ozawa, M.; Ōsawa, E. Computational Modelling of the Metal and Other Elemental Catalysis in the Stone-Wales Fullerene Rearrangements. J. Organomet. Chem 2000, 599, 57–61.
  • Hao, Y.; Feng, L.; Xu, W.; Gu, Z.; Hu, Z.; Shi, Z.; Slanina, Z.; Uhlík, F. Sm@C2v (19138)-C76: A Non-IPR Cage Stabilized by a Divalent Metal Ion. Inorg. Chem. 2015, 54, 4243–4248. DOI: 10.1021/ic502911v.
  • Hao, Y.; Tang, Q.; Li, X.; Zhang, M.; Wan, Y.; Feng, L.; Chen, N.; Slanina, Z.; Adamowicz, L.; Uhlík, F. Isomeric Sc2O@C78 Related by a Single-Step Stone–Wales Transformation: Key Links in an Unprecedented Fullerene Formation Pathway. Inorg. Chem. 2016, 55, 11354–11361. DOI: 10.1021/acs.inorgchem.6b01894.
  • Jehlička, J.; Svatoš, A.; Frank, O.; Uhlík, F. Evidence for Fullerenes in Solid Bitumen from Pillow Lavas of Proterozoic Age from Mítov (Bohemian Massif. Czech Republic). Geochem. Cosmochem. Acta 2003, 67, 1495–1506.
  • Lian, Y.; Shi, Z.; Zhou, X.; Gu, Z. Different Extraction Behaviors between Divalent and Trivalent Endohedral Metallofullerenes. Chem. Mater. 2004, 16, 1704–1714. DOI: 10.1021/cm0344156.
  • Maeda, Y.; Tsuchiya, T.; Kikuchi, T.; Nikawa, H.; Yang, T.; Zhao, X.; Slanina, Z.; Suzuki, M.; Yamada, M.; Lian, Y.; et al. Effective Derivatization and Extraction of Insoluble Missing Lanthanum Metallofullerenes La@C 2n (n = 36-38) with Iodobenzene. Carbon 2016, 98, 67–73. DOI: 10.1016/j.carbon.2015.10.088.
  • Slanina, Z.; Uhlík, F.; Lee, S.-L.; Adamowicz, L.; Nagase, S. Computations of Endohedral Fullerenes: The Gibbs Energy Treatment. J. Comput. Methods Sci. Engn 2006, 6, 243–250.
  • Gueorguiev, G. K.; Stafström, S.; Hultman, L. Nano-Wire Formation by Self-Assembly of Silicon-Metal Cage-like Molecules. Chem. Phys. Lett. 2008, 458, 170–174. DOI: 10.1016/j.cplett.2008.04.108.
  • An, D.-Y.; Su, J.-G.; Li, C.-H.; Li, J.-Y. Computational Studies on the Interactions of Nanomaterials with Proteins and Their Impacts. Chin. Phys. B 2015, 24, 120504–1–120504-8.
  • Basiuk, V. A.; Tahuilan-Anguiano, D. E. Complexation of Free-Base and 3d Transition Metal(II) Phthalocyanines with Endohedral Fullerene Sc3N@C80. Chem. Phys. Lett. 2019, 722, 146–152. DOI: 10.1016/j.cplett.2019.03.019.
  • Tahuilan-Anguiano, D. E.; Basiuk, V. A. Complexation of Free-Base and 3d Transition Metal(II) Phthalocyanines with Endohedral Fullerenes H@C60, H2@C60 and He@C60: The Effect of Encapsulated Species. Diam. Rel. Mater. 2021, 118, 108510–1–108510-5.
  • Li, M.; Zhao, R.; Dang, J.; Zhao, X. Theoretical Study on the Stabilities, Electronic Structures, and Reaction and Formation Mechanisms of Fullerenes and Endohedral Metallofullerenes. Coor. Chem. Rev. 2022, 471, 214762–1–214762-12.
  • Slanina, Z.; Uhlík, F.; Adamowicz, L. Theoretical Predictions of Fullerene Stabilities. In Handbook of Fullerene Science and Technology Lu, X.; Akasaka, T.; Slanina, Z., Eds. Springer: Singapore, 2022, pp. 111–179
  • Fang, Y.; Bi, C.; Wang, D.; Huang, J. The Functions of Fullerenes in Hybrid Perovskite Solar Cells. ACS Energy Lett. 2017, 2, 782–794. DOI: 10.1021/acsenergylett.6b00657.
  • Okazaki, T.; Shimada, T.; Suenaga, K.; Ohno, Y.; Mizutani, T.; Lee, J.; Kuk, Y.; Shinohara, H. Electronic Properties of Gd@C82 Metallofullerene Peapods: (Gd@C82)n@SWNTs. Appl. Phys. A 2003, 76, 475–478.
  • Zhang, K. K.; Wang, C.; Zhang, M. H.; Bai, Z. B.; Xie, F. F.; Tan, Y. Z.; Guo, Y. L.; Hu, K. J.; Cao, L.; Zhang, S.; et al. A Gd@C82 Single-Molecule Electret. Nat. Nanotech. 2020, 15, 1019–1024.
  • Wu, B.-S.; An, M.-W.; Chen, J.-M.; Xing, Z.; Chen, Z.-C.; Deng, L.-L.; Tian, H.-R.; Yun, D.-Q.; Xie, S.-Y.; Zheng, L.-S. Radiation-Processed Perovskite Solar Cells with Fullerene-Enhanced Performance and Stability. Cell Rep. Phys. Sci. 2021, 2, 100646–1–100646-16.
  • Bologna, F.; Mattioli, E. J.; Bottoni, A.; Zerbetto, F.; Calvaresi, M. Interactions between Endohedral Metallofullerenes and Proteins: The Gd@C60–Lysozyme Model. ACS Omega. 2018, 3, 13782–13789. DOI: 10.1021/acsomega.8b01888.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.