0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of adding n-amyl alcohol, dimethylfuran to fuel on soot formation in aviation kerosene diffusion flame

, , , &
Received 28 May 2024, Accepted 04 Jun 2024, Published online: 18 Jun 2024

References

  • Abdalla, A. O. G.; Liu, D.; Zhang, L.; Zhao, X.; Jiang, B.; He, X. Nanoscale Inspection on Carbon Particles from Commercial RP-3 Kerosene Combustion with Different Dilutions. Fullerenes. Nanotubes Carbon Nanostruct. 2020, 28, 959–972. DOI: 10.1080/1536383X.2020.1786817.
  • Xu, J.; Li, T.; Li, J.; Zhu, Y.; Tian, R.,J. Study on the Nano and Physicochemical Properties of Soot Particles Produced by Kerosene Combustion. Fullerenes. Nanotubes Carbon Nanostruct. 2022, 30, 1102–1108. DOI: 10.1080/1536383X.2022.2072303.
  • Bockhor, H. Soot Formation in Combustion: Mechanisms and Models. Berlin: Springer, 1994.
  • Richter, H.; Howard, J. B. Formation of Polycyclic Aromatic Hydrocarbons and Their Growth to Soot—a Review of Chemical Reaction Pathways. Prog. Energy Combust. Sci. 2000, 26, 565–608. DOI: 10.1016/S0360-1285(00)00009-5.
  • McEnally, C. S.; Pfefferle, L. D.; Atakan, B.; Kohse-Höinghaus, K. Studies of Aromatic Hydrocarbon Formation Mechanisms in Flames: Progress towards Closing the Fuel Gap. Prog. Energy Combust. Sci. 2006, 32, 247–294. DOI: 10.1016/j.pecs.2005.11.003.
  • Tree, D. R.; Svensson, K. I. Soot Processes in Compression Ignition Engines. Prog. Energy Combust. Sci. 2007, 33, 272–309. DOI: 10.1016/j.pecs.2006.03.002.
  • Wang, H.; Frenklach, M. A Detailed Kinetic Modeling Study of Aromatics Formation in Laminar Premixed Acetylene and Ethylene Flames. Combust. Flame 1997, 110, 173–221. DOI: 10.1016/S0010-2180(97)00068-0.
  • Appel, J.; Bockhorn, H.; Frenklach, M. Kinetic Modeling of Soot Formation with Detailed Chemistry and Physics: Laminar Premixed Flames of C2 Hydrocarbons. Combust. Flame 2000, 121, 122–136. DOI: 10.1016/S0010-2180(99)00135-2.
  • Richter, H.; Granata, S.; Green, W. H.; Howard, J. B. Detailed Modeling of PAH and Soot Formation in a Laminar Premixed Benzene/Oxygen/Argon Low-Pressure Flame. Proc. Combust. Inst. 2005, 30, 1397–1405. DOI: 10.1016/j.proci.2004.08.088.
  • Raj, A.; Prada, I. D. C.; Amer, A. A.; Chung, S. H. A Reaction Mechanism for Gasoline Surrogate Fuels for Large Polycyclic Aromatic Hydrocarbons. Combust. Flame 2012, 159, 500–515. DOI: 10.1016/j.combustflame.2011.08.011.
  • Akhter, M. S.; Chughtai, A. R.; Smith, D. M. Aromaticity of Elemental Carbon (Soot) by 13C CP/MAS and FT-IR Spectroscopy. Carbon 1985, 23, 593–594. DOI: 10.1016/0008-6223(85)90097-1.
  • Santamaria, A.; Yang, N.; Eddings, E.; Mondragon, F. Chemical and Morphological Characterization of Soot and Soot Precursors Generated in an Inverse Diffusion Flame with Aromatic and Aliphatic Fuels. Combust. Flame 2010, 157, 33–42. DOI: 10.1016/j.combustflame.2009.09.016.
  • Cain, J. P.; Camacho, J.; Phares, D. J.; Wang, H.; Laskin, A. Evidence of Aliphatics in Nascent Soot Particles in Premixed Ethylene Flames. Proc. Combust. Inst. 2011, 33, 533–540. DOI: 10.1016/j.proci.2010.06.164.
  • Wang, H. Formation of Nascent Soot and Other Condensed-Phase Materials in Flames. Proc. Combust. Inst. 2011, 33, 41–67. DOI: 10.1016/j.proci.2010.09.009.
  • Wang, L.; Song, C.; Song, J.; Lv, G.; Pang, H.; Zhang, W. Aliphatic C–H and Oxygenated Surface Functional Groups of Diesel in-Cylinder Soot: Characterizations and Impact on Soot Oxidation Behavior. Proc. Combust. Inst. 2013, 34, 3099–3106. DOI: 10.1016/j.proci.2012.07.052.
  • Krestinin, A. V. Polyyne Model of Soot Formation Process. Symp. (Int) Combust. 1998, 27, 1557–1563. DOI: 10.1016/S0082-0784(98)80564-X.
  • Chung, S. H.; Violi, A. Peri-Condensed Aromatics with Aliphatic Chains as Key Intermediates for the Nucleation of Aromatic Hydrocarbons. Proc. Combust. Inst. 2011, 33, 693–700. DOI: 10.1016/j.proci.2010.06.038.
  • Elvati, P.; Violi, A. Thermodynamics of Poly-Aromatic Hydrocarbon Clustering and the Effects of Substituted Aliphatic Chains. Proc. Combust. Inst. 2013, 34, 1837–1843. DOI: 10.1016/j.proci.2012.07.030.
  • Saffaripour, M.; Veshkini, A.; Kholghy, M.; Thomson, M. J. Experimental Investigation and Detailed Modeling of Soot Aggregate Formation and Size Distribution in Laminar Coflow Diffusion Flames of Jet A-1, a Synthetic Kerosene, and n-Decane. Combust, Flame 2014, 161, 848–863. [Database] DOI: 10.1016/j.combustflame.2013.10.016.
  • Chu, H.; Ya, Y.; Nie, X.; Qiao, F.; E, J. Effects of Adding Cyclohexane, N-Hexane, Ethanol, and 2,5-Dimethylfuran to Fuel on Soot Formation in Laminar Coflow N-Heptane/Iso- Octane Diffusion Flame. Combust. Flame 2021, 225, 120–135. DOI: 10.1016/j.combustflame.2020.10.030.
  • Hua, Y.; Liu, F.; Wu, H.; Lee, C.-F.; Li, Y. Effects of Alcohol Addition to Traditional Fuels on Soot Formation: A Review. Int. J. Engine Res. 2020, 22, 1395–1420. DOI: 10.1177/146808742091088.
  • Yan, F.; Xu, L.; Wang, Y.; Park, S.; Sarathy, S. M.; Chung, S. H. On the Oppos- Ing Effects of Methanol and Ethanol Addition on PAH and Soot Formation in Ethylene Counterflow Diffusion Flames. Combust. Flame 2019, 202, 228–242. DOI: 10.1016/j.combustflame.2019.01.020.
  • Han, W.; Liu, G.; Seo, W.; Lee, H.; Chu, H.; Yang, W. Nitrogen-Doped Chain-like Carbon Nanospheres with Tunable Interlayer Distance for Superior Pseudocapacitance-Dominated Zinc-and Potassium-Ion Storage. Carbon 2021, 184, 534–543. DOI: 10.1016/j.carbon.2021.08.060.
  • Dippel, B.; Jander, H.; Heintzenberg, J. NIR FT Raman Spectroscopic Study of Flame Soot. Phys. Chem. Chem. Phys. 1999, 1, 4707–4712. DOI: 10.1039/a904529e.
  • Han, W.; Chen, D.; Li, Q.; Liu, W.; Chu, H.; Rui, X. Ultrafast Flame Growth of Carbon Nanotubes for High-Rate Sodium Storage. J. Power Sources 2019, 439, 227072. DOI: 10.1016/j.jpowsour.2019.227072.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.