28
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biomass-derived activated carbon nanocomposites with multicolor photoluminescence

, , , , &
Received 04 Apr 2024, Accepted 16 Jun 2024, Published online: 27 Jun 2024

References

  • Wu, Z.; Wang, Y.; Liu, X.; Lv, C.; Li, Y.; Wei, D.; Liu, Z. Carbon‐Nanomaterial‐Based Flexible Batteries for Wearable Electronics. Adv. Mater. 2019, 31, e1800716. DOI: 10.1002/adma.201800716.
  • Huang, J.; Liu, J.; Wang, J. Optical Properties of Biomass-Derived Nanomaterials for Sensing, Catalytic, Biomedical, and Environmental Applications. TrAC Trends Anal. Chem. 2020, 124, 115800. DOI: 10.1016/j.trac.2019.115800.
  • Wang, M. L.; Zhang, S.; Zhou, Z. H.; Zhu, J. L.; Gao, J. F.; Dai, K.; Huang, H. D.; Li, Z. M. Facile Heteroatom Doping of Biomass-Derived Carbon Aerogels with Hierarchically Porous Architecture and Hybrid Conductive Network: Towards High Electromagnetic Interference Shielding Effectiveness and High Absorption Coefficient. Compos. Part B Eng. 2021, 224, 109175. DOI: 10.1016/j.compositesb.2021.109175.
  • Teng, G.; Qin, X.; Gan, Y.; Heng, Y.; Hu, D. Contribution of Bamboo Charcoal Interconnection in Double Electrodes to Evaluate the Photovoltaic Performance. Sol. Energy 2022, 245, 365–375. DOI: 10.1016/j.solener.2022.09.031.
  • Malode, S. J.; Shanbhag, M. M.; Kumari, R.; Dkhar, D. S.; Chandra, P.; Shetti, N. P. Biomass-Derived Carbon Nanomaterials for Sensor Applications. J. Pharm. Biomed. Anal. 2023, 222, 115102. DOI: 10.1016/j.jpba.2022.115102.
  • Li, Z.; Guo, D.; Liu, Y.; Wang, H.; Wang, L. Recent Advances and Challenges in Biomass-Derived Porous Carbon Nanomaterials for Supercapacitors. Chem. Eng. J. 2020, 397, 125418. DOI: 10.1016/j.cej.2020.125418.
  • Tiwari, S. K.; Bystrzejewski, M.; De Adhikari, A.; Huczko, A.; Wang, N. Methods for the Conversion of Biomass Waste into Value-Added Carbon Nanomaterials: Recent Progress and Applications. Prog. Energy Combust. Sci. 2022, 92, 101023. DOI: 10.1016/j.pecs.2022.101023.
  • Prusov, A. N.; Prusova, S. M.; Radugin, M. V.; Bazanov, A. V. Characteristics of Activated Carbon Prepared from Flax Shive by NH4NO3 and NH4Cl Activation. Fuller. Nanotub. Carbon Nanostructures 2022, 30, 89–98. DOI: 10.1080/1536383X.2021.1989413.
  • Supee, A. H.; Ahmad Zaini, M. A. Coffee Residue Activated Carbons–A Commentary. Fuller. Nanotub. Carbon Nanostructures 2023, 31, 191–196. DOI: 10.1080/1536383X.2022.2137147.
  • Szabó, T.; Berkesi, O.; Forgó, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dékány, I. Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides. Chem. Mater. 2006, 18, 2740–2749. DOI: 10.1021/cm060258+.
  • Yuan, T.; Meng, T.; He, P.; Shi, Y.; Li, Y.; Li, X.; Fan, L.; Yang, S. Carbon Quantum Dots: An Emerging Material for Optoelectronic Applications. J. Mater. Chem. C 2019, 7, 6820–6835. DOI: 10.1039/C9TC01730E.
  • Ilican, S.; Caglar, Y.; Caglar, M. Preparation and Characterization of ZnO Thin Films Deposited by Sol-Gel Spin Coating Method. J. Optoelectron. Adv. Mater. 2008, 10, 2578–2583. DOI: 10.1063/1.3526243.
  • Tian, Z. R.; Voigt, J. A.; Liu, J.; Mckenzie, B.; Mcdermott, M. J.; Rodriguez, M. A.; Konishi, H.; Xu, H. Complex and Oriented ZnO Nanostructures. Nat. Mater. 2003, 2, 821–826. DOI: 10.1038/nmat1014.
  • Wei, J.; Zhang, B.; Yao, N.; Wang, X.; Ma, H.; Wang, S. Pulsed Laser Deposition of Zinc Oxide Luminescent Thin Films. J. Vac. Sci. Technol. B 2001, 19, 1082–1084. DOI: 10.1116/1.1368668.
  • Layek, A.; Stanish, P. C.; Chirmanov, V.; Radovanovic, P. V. Hybrid ZnO-Based Nanoconjugate for Efficient and Sustainable White Light Generation. Chem. Mater. 2015, 27, 1021–1030. DOI: 10.1021/cm504330k.
  • Rauwel, P.; Salumaa, M.; Aasna, A.; Galeckas, A.; Rauwel, E. A Review of the Synthesis and Photoluminescence Properties of Hybrid ZnO and Carbon Nanomaterials. J. Nanomater. 2016, 2016, 1–12. DOI: 10.1155/2016/5320625.
  • Eda, G.; Lin, Y. Y.; Mattevi, C.; Yamaguchi, H.; Chen, H. A.; Chen, I. S. C. W.; Chen, C. W.; Chhowalla, M. Blue Photoluminescence from Chemically Derived Graphene Oxide. Adv. Mater. 2010, 22, 505–509. DOI: 10.1002/adma.200901996.
  • Zhu, L. P.; Liao, G. H.; Huang, W. Y.; Ma, L. L.; Yang, Y.; Yu, Y.; Fu, S. Y. Preparation, Characterization, and Photocatalytic Properties of ZnO-Coated Multi-Walled Carbon Nanotubes. Mater. Sci. Eng. B 2009, 163, 194–198. DOI: 10.1016/j.mseb.2009.05.021.
  • Wang, H.; Wang, L.; Qu, C.; Su, Y.; Yu, S.; Zheng, W.; Liu, Y. Photovoltaic Properties of Graphene Oxide Sheets Beaded with ZnO Nanoparticles. J. Solid State Chem. 2011, 184, 881–887. DOI: 10.1016/j.jssc.2011.02.025.
  • Zou, W.; Zhu, J.; Sun, Y.; Wang, X. Depositing ZnO Nanoparticles onto Graphene in a Polyol System. Mater. Chem. Phys. 2011, 125, 617–620. DOI: 10.1016/j.matchemphys.2010.10.008.
  • Lu, T.; Pan, L.; Li, H.; Zhu, G.; Lv, T.; Liu, X.; Sun, Z.; Chen, T.; Chua, D. H. Microwave-Assisted Synthesis of Graphene–ZnO Nanocomposite for Electrochemical Supercapacitors. J. Alloys Compd. 2011, 509, 5488–5492. DOI: 10.1016/j.jallcom.2011.02.136.
  • Akhavan, O. Graphene Nanomesh by ZnO Nanorod Photocatalysts. ACS Nano. 2010, 4, 4174–4180. DOI: 10.1021/nn1007429.
  • Son, D. I.; Kwon, B. W.; Park, D. H.; Seo, W. S.; Yi, Y.; Angadi, B.; Lee, C. L.; Choi, W. K. Emissive ZnO–Graphene Quantum Dots for White-Light-Emitting Diodes. Nat. Nanotechnol. 2012, 7, 465–471. DOI: 10.1038/nnano.2012.71.
  • Zhang, C.; Lin, J. Defect-Related Luminescent Materials: Synthesis, Emission Properties and Applications. Chem. Soc. Rev. 2012, 41, 7938–7961. DOI: 10.1039/C2CS35215J.
  • Collins, A. T. The Characterization of Point Defects in Diamond by Luminescence Spectroscopy. Diamond Relat. Mater. 1992, 1, 457–469. DOI: 10.1016/0925-9635(92)90146-F.
  • Jena, L.; Soren, D.; Deheri, P. K.; Pattojoshi, P. Preparation, Characterization and Optical Properties Evaluations of Bamboo Charcoal. Curr. Res. Green Sustain. Chem. 2021, 4, 100077. DOI: 10.1016/j.crgsc.2021.100077.
  • Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J. P25-Graphene Composite as a High Performance Photocatalyst. ACS Nano. 2010, 4, 380–386. DOI: 10.1021/nn901221k.
  • Ding, S.; Luan, D.; Boey, F. Y. C.; Chen, J. S.; Lou, X. W. D. SnO2 Nanosheets Grown on Graphene Sheets with Enhanced Lithium Storage Properties. Chem. Commun. 2011, 47, 7155–7157. DOI: 10.1039/C1CC11968K.
  • Zou, Y.; Wang, Y. NiO Nanosheets Grown on Graphene Nanosheets as Superior Anode Materials for Li-Ion Batteries. Nanoscale 2011, 3, 2615–2620. DOI: 10.1039/C1NR10070J.
  • Shen, X.; Mu, D.; Chen, S.; Wu, B.; Wu, F. Enhanced Electrochemical Performance of ZnO-Loaded/Porous Carbon Composite as Anode Materials for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2013, 5, 3118–3125. DOI: 10.1021/am400020n.
  • Su, J.; Cao, M.; Ren, L.; Hu, C. Fe3O4–Graphene Nanocomposites with Improved Lithium Storage and Magnetism Properties. J. Phys. Chem. C 2011, 115, 14469–14477. DOI: 10.1021/jp201666s.
  • Said, R. A.; Hasan, M. A.; Abdelzaher, A. M.; Abdel-Raoof, A. M. Insights into the Developments of Nanocomposites for Its Processing and Application as Sensing Materials. J. Electrochem. Soc. 2020, 167, 037549. DOI: 10.1149/1945-7111/ab697b.
  • Das, D.; Plazas-Tuttle, J.; Sabaraya, I. V.; Jain, S. S.; Sabo-Attwood, T.; Saleh, N. B. An Elegant Method for Large Scale Synthesis of Metal Oxide–Carbon Nanotube Nanohybrids for Nano-Environmental Application and Implication Studies. Environ. Sci. Nano 2017, 4, 60–68. DOI: 10.1039/C6EN00294C.
  • Motshekga, S. C.; Pillai, S. K.; Ray, S. S.; Jalama, K.; Krause, R. W. Recent Trends in the Microwave-Assisted Synthesis of Metal Oxide Nanoparticles Supported on Carbon Nanotubes and Their Applications. J. Nanomater. 2012, 2012, 1–15. DOI: 10.1155/2012/691503.
  • Mallakpour, S.; Khadem, E. Carbon Nanotube–Metal Oxide Nanocomposites: Fabrication, Properties and Applications. Chem. Eng. J. 2016, 302, 344–367. DOI: 10.1016/j.cej.2016.05.038.
  • Salah, W.; Djeridi, W.; Houas, A.; Elsellami, L. Synergy between Activated Carbon and ZnO: A Powerful Combination for Selective Adsorption and Photocatalytic Degradation. Mater. Adv. 2024, 5, 1667–1675. DOI: 10.1039/D3MA01171B.
  • Nasseh, N.; Arghavan, F. S.; Rodriguez-Couto, S.; Panahi, A. H.; Esmati, M.; A-Musawi, T. J. Preparation of Activated Carbon@ ZnO Composite and Its Application as a Novel Catalyst in Catalytic Ozonation Process for Metronidazole Degradation. Adv. Powder Technol. 2020, 31, 875–885. DOI: 10.1016/j.apt.2019.12.006.
  • Tahir, D.; Ilyas, S.; Abdullah, B.; Armynah, B.; Kang, H. J. Electronic Properties of Composite Iron (II, III) Oxide (Fe3O4) Carbonaceous Absorber Materials by Electron Spectroscopy. J. Electron. Spectrosc. Relat. Phenom. 2018, 229, 47–51. DOI: 10.1016/j.elspec.2018.09.008.
  • Putz, H.; Brandenburg, K. Match!–Phase Analysis Using Powder Diffraction. In Crystal Impact; GbR: Bonn, 1997; Vol. 102, pp 53227. https://www.crystalimpact.de/match.
  • Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. DOI: 10.1038/nmeth.2089.
  • Wojdyr, M. Fityk: A General-Purpose Peak Fitting Program. J. Appl. Crystallogr. 2010, 43, 1126–1128. DOI: 10.1107/S0021889810030499.
  • Fairley, N.; Fernandez, V.; Richard‐Plouet, M.; Guillot-Deudon, C.; Walton, J.; Smith, E.; Flahaut, D.; Greiner, M.; Biesinger, M.; Tougaard, S.; et al. Systematic and Collaborative Approach to Problem Solving Using X-Ray Photoelectron Spectroscopy. Appl. Surf. Sci. Adv. 2021, 5, 100112. DOI: 10.1016/j.apsadv.2021.100112.
  • Tao, Z.; Yu, X.; Liu, J.; Yang, L.; Yang, S. A Facile Synthesis and Photoluminescence of Porous S-Doped ZnO Architectures. J. Alloys Compd. 2008, 459, 395–398. DOI: 10.1016/j.jallcom.2007.04.273.
  • Kahsay, M. H.; Tadesse, A.; RamaDevi, D.; Belachew, N.; Basavaiah, K. Green Synthesis of Zinc Oxide Nanostructures and Investigation of Their Photocatalytic and Bactericidal Applications. RSC Adv. 2019, 9, 36967–36981. DOI: 10.1039/C9RA07630A.
  • Ramesh, P.; Saravanan, K.; Manogar, P.; Johnson, J.; Vinoth, E.; Mayakannan, M. Green Synthesis and Characterization of Biocompatible Zinc Oxide Nanoparticles and Evaluation of Its Antibacterial Potential. Sens. Bio-Sens. Res. 2021, 31, 100399. DOI: 10.1016/j.sbsr.2021.100399.
  • Qiu, T.; Yang, J. G.; Bai, X. J.; Wang, Y. L. The Preparation of Synthetic Graphite Materials with Hierarchical Pores from Lignite by One-Step Impregnation and Their Characterization as Dye Absorbents. RSC Adv. 2019, 9, 12737–12746. DOI: 10.1039/C9RA00343F.
  • Zhang, T.; Mao, J.; Liu, X.; Xuan, M.; Bi, K.; Zhang, X. L.; Hu, J.; Fan, J.; Chen, S.; Shao, G. Pinecone Biomass-Derived Hard Carbon Anodes for High-Performance Sodium-Ion Batteries. RSC Adv. 2017, 7, 41504–41511. DOI: 10.1039/C7RA07231G.
  • Upadhyay, R. V.; Raj, K.; Parekh, K. H.; Pisuwala, M. S. Physicochemical Properties of Mixed Oil-Based and Bilayer-Stabilized Magnetic Fluids. Chem. Pap. 2023, 77, 2871–2883. DOI: 10.1007/s11696-023-02672-z.
  • Ge, S.; Shi, X.; Sun, K.; Li, C.; Uher, C.; Baker, J. R. Jr.; Banaszak Holl, M. M.; Orr, B. G. Facile Hydrothermal Synthesis of Iron Oxide Nanoparticles with Tunable Magnetic Properties. J. Phys. Chem. C Nanomater. Interfaces 2009, 113, 13593–13599. DOI: 10.1021/jp902953t.
  • Priyadarshini, P.; Das, S.; Alagarasan, D.; Ganesan, R.; Varadharajaperumal, S.; Naik, R. Observation of High Nonlinearity in Bi Doped BixIn35−xSe65 Thin Films with Annealing. Sci. Rep. 2021, 11, 21518. DOI: 10.1038/s41598-021-01134-4.
  • Mote, V. D.; Purushotham, Y.; Dole, B. N. Williamson-Hall Analysis in Estimation of Lattice Strain in Nanometer-Sized ZnO Particles. J. Theor. Appl. Phys. 2012, 6, 1–8. DOI: 10.1186/2251-7235-6-6.
  • Ilyas, S.; Abdullah, B.; Tahir, D. X-Ray Diffraction Analysis of Nanocomposite Fe3O4/Activated Carbon by Williamson–Hall and Size-Strain Plot Methods. Nanostruct. Nano-Objects 2019, 20, 100396. DOI: 10.1016/j.nanoso.2019.100396.
  • Tayade, N. T.; Tirpude, M. P. Frustrated Microstructures Composite PbS Material’s Size Perspective from XRD by Variant Models of Williamson–Hall Plot Method. Bull. Mater. Sci. 2023, 46, 20. DOI: 10.1007/s12034-022-02843-w.
  • Das, S.; Senapati, S.; Pradhan, G. K.; Varadharajanperumal, S.; Naik, R. A Facile Microwave-Assisted Nanoflower-to-Nanosphere Morphology Tuning of CuSe1–xTe1+x for Optoelectronic and Dielectric Applications. ACS Appl. Nano Mater. 2023, 6, 5298–5312. DOI: 10.1021/acsanm.2c05429.
  • Bag, O.; Tekin, K.; Karagoz, S. Microporous Activated Carbons from Lignocellulosic Biomass by KOH Activation. Fuller. Nanotub. Carbon Nanostructures 2020, 28, 1030–1037. DOI: 10.1080/1536383X.2020.1794850.
  • Zhang, J.; Gao, J.; Chen, Y.; Hao, X.; Jin, X. Characterization, Preparation, and Reaction Mechanism of Hemp Stem Based Activated Carbon. Results Phys. 2017, 7, 1628–1633. DOI: 10.1016/j.rinp.2017.04.028.
  • Soren, D.; Mehena, G.; Pattojoshi, P.; Deheri, P. K. Dielectric Relaxation and Polaron Hopping in Biomass Derived Activated Carbon. Fuller. Nanotub. Carbon Nanostructures 2023, 31, 940–952. DOI: 10.1080/1536383X.2023.2226270.
  • Baytar, O.; Şahin, Ö.; Saka, C.; Ağrak, S. Characterization of Microwave and Conventional Heating on the Pyrolysis of Pistachio Shells for the Adsorption of Methylene Blue and Iodine. Anal. Lett. 2018, 51, 2205–2220. DOI: 10.1080/00032719.2017.1415920.
  • Kosateva, A.; Stoycheva, I.; Petrova, B.; Tsyntsarski, B. Characterization of Some Carbon Materials by Raman Spectroscopy. Bulg. Chem. Commun. 2021, 53, 85–88. DOI: 10.34049/bcc.53.А.0011.
  • Peng, H.; Ma, G.; Sun, K.; Mu, J.; Zhang, Z.; Lei, Z. Formation of Carbon Nanosheets via Simultaneous Activation and Catalytic Carbonization of Macroporous Anion-Exchange Resin for Supercapacitors Application. ACS Appl. Mater. Interfaces 2014, 6, 20795–20803. DOI: 10.1021/am505066v.
  • Zbair, M.; Anfar, Z.; Ahsaine, H. A.; El Alem, N.; Ezahri, M. Acridine Orange Adsorption by Zinc Oxide/Almond Shell Activated Carbon Composite: Operational Factors, Mechanism and Performance Optimization Using Central Composite Design and Surface Modeling. J. Environ. Manage. 2018, 206, 383–397. DOI: 10.1016/j.jenvman.2017.10.058.
  • Ordonez-Casanova, E. G.; Roman-Aguirre, M.; Aguilar-Elguezabal, A.; Espinosa-Magafia, F. Structural Analysis of Carbon Nanotubes of Various Diameters Grown by Spray Pyrolysis Using Raman Spectroscopy. Microsc. Microanal. 2015, 21, 975–976. DOI: 10.1017/S143192761500567X.
  • Vivekanandhan, S.; Schreiber, M.; Muthuramkumar, S.; Misra, M.; Mohanty, A. K. Carbon Nanotubes from Renewable Feedstocks: A Move toward Sustainable Nanofabrication. J. Appl. Polym. Sci. 2016, 134, 44255. DOI: 10.1002/app.44255.
  • Dervishi, E.; Ji, Z.; Htoon, H.; Sykora, M.; Doorn, S. K. Raman Spectroscopy of Bottom-up Synthesized Graphene Quantum Dots: Size and Structure Dependence. Nanoscale 2019, 11, 16571–16581. DOI: 10.1039/C9NR05345J.
  • Liu, F.; Sun, Y.; Zheng, Y.; Tang, N.; Li, M.; Zhong, W.; Du, Y. Gram-Scale Synthesis of High-Purity Graphene Quantum Dots with Multicolor Photoluminescence. RSC Adv. 2015, 5, 103428–103432. DOI: 10.1039/C5RA19219F.
  • Priya, M. S.; Divya, P.; Rajalakshmi, R. A Review Status on Characterization and Electrochemical Behaviour of Biomass-Derived Carbon Materials for Energy Storage Supercapacitors. Sustain. Chem. Pharm. 2020, 16, 100243. DOI: 10.1016/j.scp.2020.100243.
  • Sivalingam, M. M.; Balasubramanian, K. Influence of the Concentration of Reducing Agent on Gold Nanoparticles Decorated Reduced Graphene Oxide and Its Ammonia Sensing Performance. Appl. Phys. A 2017, 123, 281. DOI: 10.1007/s00339-017-0910-9.
  • Wagner, C. D. The NIST X-Ray Photoelectron Spectroscopy (XPS) Database; U.S. Dept. of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, 1991. https://search.library.wisc.edu/catalog/999715055302121.
  • Naumkin, A. V.; Kraut-Vass, A.; Powell, C. J.; Gaarenstroom, S. W. NIST X-Ray Photoelectron Spectroscopy Database. NIST Standard Reference Database Number 20; Measurement Services Division of the National Institute of Standards and Technology (NIST) Technology Services: Gaithersburg, MD, 2008; pp 20899. DOI: 10.18434/T4T88K.
  • Dupin, J. C.; Gonbeau, D.; Vinatier, P.; Levasseur, A. Systematic XPS Studies of Metal Oxides, Hydroxides, and Peroxides. Phys. Chem. Chem. Phys. 2000, 2, 1319–1324. DOI: 10.1039/a908800h.
  • Zhang, H.; Li, W.; Qin, G.; Fang, L.; Ruan, H.; Tan, M.; Wu, F.; Kong, C. Effect of Surface Carbon Contamination on the Chemical States of N-Doped ZnO Thin Films. Appl. Phys. A 2018, 124, 1–6. DOI: 10.1007/s00339-018-1565-x.
  • Rajan, A.; Sharma, M.; Sahu, N. K. Assessing Magnetic and Inductive Thermal Properties of Various Surfactants Functionalised Fe3O4 Nanoparticles for Hyperthermia. Sci. Rep. 2020, 10, 15045. DOI: 10.1038/s41598-020-71703-6.
  • Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Investigation of Multiplet Splitting of Fe 2p XPS Spectra and Bonding in Iron Compounds. Surf. Interface Anal. 2004, 36, 1564–1574. DOI: 10.1002/sia.1984.
  • Li, Z.; Chen, H.; Liu, W. Full-Spectrum Photocatalytic Activity of ZnO/CuO/ZnFe2O4 Nanocomposite as a Photofenton-like Catalyst. Catalysts 2018, 8, 557. DOI: 10.3390/catal8110557.
  • Khare, P. S.; Yadav, R.; Swarup, A. RGO-ZnO Nanocomposite Material of Enhanced Absorbance for Solar Energy Conversion. Int. J. Appl. Phys. Math. 2013, 3, 95–97. DOI: 10.7763/IJAPM.2013.V3.183.
  • Zak, A. K.; Abrishami, M. E.; Majid, W. A.; Yousefi, R.; Hosseini, S. M. Effects of Annealing Temperature on Some Structural and Optical Properties of ZnO Nanoparticles Prepared by a Modified Sol–Gel Combustion Method. Ceram. Int. 2011, 37, 393–398. DOI: 10.1016/j.ceramint.2010.08.017.
  • Kubelka, P.; Monk, F. Contribution to the Optics of Pigments. Z. Technol. Phys. 1931, 12, 593–601.
  • Zanatta, A. R.; Chambouleyron, I. Absorption Edge, Band Tails, and Disorder of Amorphous Semiconductors. Phys. Rev. B Condens. Matter. 1996, 53, 3833–3836. DOI: 10.1103/PhysRevB.53.3833.
  • Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi B 1966, 15, 627–637. DOI: 10.1002/pssb.19660150224.
  • Anderson, D. A. The Electrical and Optical Properties of Amorphous Carbon Prepared by the Glow Discharge Technique. Philos. Mag. 1977, 35, 17–26. DOI: 10.1080/14786437708235968.
  • Adhikari, S.; Aryal, H. R.; Ghimire, D. C.; Kalita, G.; Umeno, M. Optical Band Gap of Nitrogenated Amorphous Carbon Thin Films Synthesized by Microwave Surface Wave Plasma CVD. Diamond Relat. Mater. 2008, 17, 1666–1668. DOI: 10.1016/j.diamond.2008.03.027.
  • Miyajima, Y.; Tison, Y.; Giusca, C. E.; Stolojan, V.; Watanabe, H.; Habuchi, H.; Henley, S. J.; Shannon, J. M.; Silva, S. R. P. Probing the Band Structure of Hydrogen-Free Amorphous Carbon and the Effect of Nitrogen Incorporation. Carbon 2011, 49, 5229–5238. DOI: 10.1016/j.carbon.2011.07.040.
  • Liqiang, J.; Yichun, Q.; Baiqi, W.; Shudan, L.; Baojiang, J.; Libin, Y.; Wei, F.; Honggang, F.; Jiazhong, S. Review of Photoluminescence Performance of Nano-Sized Semiconductor Materials and Its Relationships with Photocatalytic Activity. Sol. Energy Mater. Sol. Cells 2006, 90, 1773–1787. DOI: 10.1016/j.solmat.2005.11.007.
  • Mei, Q.; Liu, B.; Han, G.; Liu, R.; Han, M. Y.; Zhang, Z. Graphene Oxide: From Tunable Structures to Diverse Luminescence Behaviors. Adv. Sci. 2019, 6, 1900855. DOI: 10.1002/advs.201900855.
  • Jangir, L. K.; Kumari, Y.; Kumar, A.; Kumar, M.; Awasthi, K. Investigation of Luminescence and Structural Properties of ZnO Nanoparticles, Synthesized with Different Precursors. Mater. Chem. Front. 2017, 1, 1413–1421. DOI: 10.1039/C7QM00058H.
  • Cross, R. B. M.; De Souza, M. M.; Narayanan, E. S. A Low Temperature Combination Method for the Production of ZnO Nanowires. Nanotechnology 2005, 16, 2188–2192. DOI: 10.1088/0957-4484/16/10/035.
  • Raji, R.; Gopchandran, K. G. ZnO Nanostructures with Tunable Visible Luminescence: Effects of Kinetics of Chemical Reduction and Annealing. J. Sci. Adv. Mater. Devices 2017, 2, 51–58. DOI: 10.1016/j.jsamd.2017.02.002.
  • Gurylev, V.; Perng, T. Defect Engineering of ZnO: Review on Oxygen and Zinc Vacancies. J. Eur. Ceram. Soc. 2021, 41, 4977–4996. DOI: 10.1016/j.jeurceramsoc.2021.03.031.
  • Xu, J. J.; Lu, Y. N.; Tao, F. F.; Liang, P. F.; Zhang, P. A. ZnO Nanoparticles Modified by Carbon Quantum Dots for the Photocatalytic Removal of Synthetic Pigment Pollutants. ACS Omega 2023, 8, 7845–7857. DOI: 10.1021/acsomega.2c07591.
  • Sadat, M. E.; Kaveh Baghbador, M.; Dunn, A. W.; Wagner, H. P.; Ewing, R. C.; Zhang, J.; Xu, H.; Pauletti, G. M.; Mast, D. B.; Shi, D. Photoluminescence and Photothermal Effect of Fe3O4 Nanoparticles for Medical Imaging and Therapy. Appl. Phys. Lett. 2014, 105, 091903. DOI: 10.1063/1.4895133.
  • Pan, P.; Lin, Y.; Gan, Z.; Luo, X.; Zhou, W.; Zhang, N. Magnetic Field Enhanced Photothermal Effect of Fe3O4 Nanoparticles. J. Appl. Phys. 2018, 123, 115115. DOI: 10.1063/1.5019598.
  • Gomez, C. V.; Robalino, E.; Haro, D.; Tene, T.; Escudero, P.; Haro, A.; Orbe, J. Structural and Electronic Properties of Graphene Oxide for Different Degree of Oxidation. Mater. Today Proc. 2016, 3, 796–802. DOI: 10.1016/j.matpr.2016.02.011.
  • Maiti, R.; Midya, A.; Narayana, C.; Ray, S. K. Tunable Optical Properties of Graphene Oxide by Tailoring the Oxygen Functionalities Using Infrared Irradiation. Nanotechnology 2014, 25, 495704. DOI: 10.1088/0957-4484/25/49/495704.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.