0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Manganese dioxide nanoparticles and nanocomposites with carbon black. Synthesis, physical-chemical and electrical properties

, , , , , , , & show all
Received 14 Jun 2024, Accepted 15 Jul 2024, Published online: 27 Jul 2024

References

  • Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Plenum Publishers; New York, 1999.
  • Boychuk, V. M.; Kotsyubunsky, V. O.; Bandura, K. V.; Rachii, B. I.; Yaremiy, I. P.; Fedorchenko, S. V. Structural and Electrical Properties of Nickel-Iron Spinel/Reduced Graphene Oxide Nanocomposites. Mol. Cryst. Liq. Cryst. 2019, 673, 137–148. DOI: 10.1080/15421406.2019.1578503.
  • Rachiy, B. I.; Starchuk, Y. Y.; Kolkovskyy, P. I.; Budzulyak, I. M.; Yablon, L. S.; Kotsyubynsky, V. O.; Morushko, O. V.; Khemiy, O. M. Accumulation of Charge Mechanisms in Electrochemical Systems Based on Carbon and Nickel Tungstate. Surf. Engin. ApplElectrochem. 2020, 56, 697–703. DOI: 10.3103/S1068375520060149.
  • Muzaffar, A.; Ahamed, M. B.; Deshmukh, K.; Thirumalai, J. A Review on Recent Advances in Hybrid Supercapacitors: Design, Fabrication and Applications. Renew. Sustain. Energy Rev. 2019, 101, 123–145. DOI: 10.1016/j.rser.2018.10.026.
  • Ostafiychuk, B. K.; Budzulyak, I. M.; Rachiy, B. I.; Lisovsky, R. P.; Mandzyuk, V. I.; Kolkovsky, P. I.; Merena, R. I.; Berkeshchuk, M. V.; Golovko, L. V. Electrochemical Properties of the Nanoporous Carbon/Aprotic Electrolyte System. J. Nano. Electron. Phys. 2017, 9, 05001–1–05001-5. DOI: 10.21272/jnep.9(5).05001.
  • Starchuk, Y.; Ivanichok, N.; Budzulyak, I.; Sklepova, S. V.; Popovych, O.; Kolkovskyi, P.; Rachiy, B. Electrochemical Properties of Nanoporous Carbon Material Subjected to Multiple Chemical Activation. Fuller. Nano. Carbon Nanostruct. 2022, 30, 936–941. DOI: 10.1080/1536383X.2022.2043285.
  • Ivanichok, N. Y.; Ivanichok, O. M.; Rachiy, B. I.; Kolkovskyi, P. I.; Budzulyak, I. M.; Kotsyubynsky, V. O.; Boychuk, V. M.; Khrushch, L. Z. Effect of the Carbonization Temperature of Plant Biomass on the Structure, Surface Condition and Electrical Conductive Properties of Carbon Nanoporous Material. J. Phys. Stud. 2021, 25, 3801. DOI: 10.30970/jps.25.3801.
  • Ivanichok, N.; Kolkovskyi, P.; Ivanichok, O.; Rachiy, B.; Borchuk, D.; Poveda, R.; Ilnitsky, N.; Boychuk, V. Fractal Characteristics of Porous Carbon Materials Obtained from Walnut Shells. Fuller. Nano. Carbon Nanostruct. 2023, 31, 828–832. DOI: 10.1080/1536383X.2023.2211696.
  • Cao, Y.; Li, S.; Xu, C.; Ma, X.; Huang, G.; Lu, C.; Li, Z. Mechanisms of Porous Carbon-Based Supercapacitors. Chem. Nano. Mat. 2021, 7, 1273–1290. DOI: 10.1002/cnma.202100261.
  • Yaremiy, I. P.; Mokhnatskyi, M. L.; Kolkovskyi, P. I.; Mokhnatska, L. V.; Yaremiy, S. I.; Kachmar, A. I.; Cherkach, K. P. Promising Cathode Material for Supercapacitors LaFe0.5Cr0.5O3 Perovskite Nanoparticles. Phys. Chem. Solid St. 2020, 21, 635–639. DOI: 10.15330/pcss.21.4.635-639.
  • Reddy, R. N.; Reddy, R. G. Sol-Gel MnO2 as an Electrode Material for Electrochemical Capacitors. J. Power Sources. 2003, 124, 330–337. DOI: 10.1016/S0378-7753(03)00600-1.
  • Zhang, C.; Higgins, T. M.; Park, S.-H.; O'Brien, S. E.; Long, D.; Coleman, J. N.; Nicolosi, V. Highly Flexible and Transparent Solid-State Supercapacitors Based on RuO2/PEDOT:PSS Conductive Ultrathin Films. Nano Energy. 2016, 28, 495–505. DOI: 10.1016/j.nanoen.2016.08.052.
  • Wu, Z.-S.; Wang, D.-W.; Ren, W.; Zhao, J.; Zhou, G.; Li, F.; Cheng, H.-M. Anchoring Hydrous RuO2 on Graphene Sheets for High-Performance Electrochemical Capacitors. Adv. Funct. Mater. 2010, 20, 3595–3602. DOI: 10.1002/adfm.201001054.
  • Korkmaz, S.; Kariper, İA.; Karaman, O.; Karaman, C. The Production of rGO/RuO2 Aerogel Supercapacitor and Analysis of Its Electrochemical Performances. Ceram. Int. 2021, 47, 34514–34520. DOI: 10.1016/j.ceramint.2021.08.366.
  • Salanne, M.; Rotenberg, B.; Naoi, K.; Kaneko, K.; Taberna, P. L.; Grey, C. P.; Dunn, B.; Simon, P. Efficient Storage Mechanisms for Building Better Supercapacitors. Nat. Energy. 2016, 1, 16070–16079. DOI: 10.1038/nenergy.2016.70.
  • Lu, X.; Zeng, Y.; Yu, M.; Zhai, T.; Liang, C.; Xie, S.; Balogun, M.-S.; Tong, Y. Oxygen-Deficient Hematite Nanorods as High-Performance and Novel Negative Electrodes for Flexible Asymmetric Supercapacitors. Adv. Mater. 2013, 26, 3148–3155. DOI: 10.1002/adma.201305851.
  • Zhang, H.; Gu, J.; Tong, J.; Hu, Y.; Guan, B.; Hu, B.; Zhao, J.; Wang, C. Hierarchical Porous MnO2/CeO2 with High Performance for Supercapacitor Electrodes. Chem. Eng. J. 2016, 286, 139–149. DOI: 10.1016/j.cej.2015.10.057.
  • Housel, L. M.; Wang, L.; Abraham, A.; Huang, J.; Renderos, G. D.; Quilty, C. D.; Brady, A. B.; Marschilok, A. C.; Takeuchi, K. J.; Takeuchi, E. S. Investigation of α-MnO2 Tunneled Structures as Model Cation Hosts for Energy Storage. Acc. Chem. Res. 2018, 51, 575–582. DOI: 10.1021/acs.accounts.7b00478.
  • Kim, B. K.; Sy, S.; Yu, A.; Zhang, J. Electrochemical Supercapacitors for Energy Storage and Conversion. Handbook Clean Ener. Syst. John Wiley & Sons, Ltd. 2015, 1–25. DOI: 10.1002/9781118991978.hces112.
  • Selvaraj, S.; Hayakawa, Y.; Ponnusamy, S.; Ikeda, H.; Chellamuthu, M. Electrodeposited MnO2-Carbon Cloth Supercapacitor Electrode Material for High Power Applications. JAP. 2018, 14, 5858–5864. DOI: 10.24297/jap.v14i3.7846.
  • Wu, D.; Xie, X.; Zhang, Y.; Zhang, D.; Du, W.; Zhang, X.; Wang, B. MnO2/Carbon Composites for Supercapacitor: Synthesis and Electrochemical Performance. Front. Mater. 2020, 7, 7. DOI: 10.3389/fmats.2020.00002.
  • Shyyko, L. O.; Kotsyubynsky, V. O.; Budzulyak, I. M.; Sagan, P. MoS2/C Multilayer Nanospheres as an Electrode Base for Lithium Power Sources. Nanoscale Res. Lett. 2016, 11, 243. DOI: 10.1186/s11671-016-1451-4.
  • Rakhi, R. B.; Chen, W.; Hedhili, M. N.; Cha, D.; Alshareef, H. N. Enhanced Rate Performance of Mesoporous Co3O4 Nanosheet Supercapacitor Electrodes by Hydrous RuO2 Nanoparticle Decoration. ACS Appl. Mater. Interfaces. 2014, 6, 4196–4206. DOI: 10.1021/am405849n.
  • Boychuk, V.; Kotsyubynsky, V.; Rachiy, B.; Bandura, K.; Hrubiak, A.; Fedorchenko, S. (OH)2/Reduced Graphene Oxide Composite as Electrode for Supercapacitors. Mater. Today: Proc. 2019, 6, 106–115. DOI: 10.1016/j.matpr.2018.10.082.
  • Kolkovska, H. M.; Yaremiy, I. P.; Kolkovskyi, P. I.; Sklepova, S. V.; Rachiy, B. I.; Belous, A. G.; Halushchak, M. O. Electrochemical Properties of Hybrid Supercapacitors Formed Based on Carbon and ABO3-Type Perovskite Materials. J. Nano- Electron. Phys. 2022, 14, 01020–1–01020-6. DOI: 10.21272/jnep.14(1).01020.
  • Kolkovskyi, P. I.; Rachiy, B. I.; Kolkovskyi, M. I.; Ostafiychuk, B. K.; Yaremiy, I. P.; Kotsyubynsky, V. O.; Ilnitsky, R. V. Synthesis and Electrochemical Properties of Mesoporous α-MnO2 for Supercapacitor Applications. J. Nano- Electron. Phys. 2020, 12, 03030–1–03030-4. DOI: 10.21272/jnep.12(3).03030.
  • Zhao, Q.; Song, A.; Ding, S.; Qin, R.; Cui, Y.; Li, S.; Pan, F. Preintercalation Strategy in Manganese Oxides for Electrochemical Energy Storage: Review and Prospects. Adv. Mater. 2020, 32, e2002450. DOI: 10.1002/adma.202002450.
  • Jayakumar, S.; Santhosh, P. C.; Mohideen, M. M.; Radhamani, A. V. A Comprehensive Review of Metal Oxides (RuO2, Co3O4, MnO2 and NiO) for Supercapacitor Applications and Global Market Trends. J. Alloys Compd. 2023, 976, 173170. DOI: 10.1016/j.jallcom.2023.173170.
  • Boychuk, T. Y.; Budzulyak, I. M.; Ivanichok, N. Y.; Lisovskiy, R. P.; Rachiy, B. I. Electrochemical Properties of Hybrid Supercapacitors Formed from Nanosized Spinel LiMn1.5Fe0.5O4. J. Nano. Electron. Phys. 2015, 7, 01019-1–01019-4. https://jnep.sumdu.edu.ua/en/component/content/full_article/1420.
  • Guo, W.; Yu, C.; Li, S.; Wang, Z.; Yu, J.; Huang, H.; Qiu, J. Strategies and Insights towards the Intrinsic Capacitive Properties of MnO2 for Supercapacitors: Challenges and Perspectives. Nano Energy., 2019, 57, 459–472. DOI: 10.1016/j.nanoen.2018.12.015.
  • Tie, D.; Huang, S.; Wang, J.; Ma, J.; Zhang, J.; Zhao, Y. Hybrid Energy Storage Devices: Advanced Electrode Materials and Matching Principles. Energy Storage Mater. 2019, 21, 22–40. DOI: 10.1016/j.ensm.2018.12.018.
  • Shin, J.; Seo, J. K.; Yaylian, R.; Huang, A.; Meng, Y. S. A Review on Mechanistic Understanding of MnO2 in Aqueous Electrolyte for Electrical Energy Storage Systems. Int. Mater. Rev. 2019, 65, 356–387. DOI: 10.1080/09506608.2019.1653520.
  • Sindhuja, M.; Padmapriya, S.; Sudha, V.; Harinipriya, S. Phase Specific α-MnO2 Synthesis by Microbial Fuel Cell for Supercapacitor Applications with Simultaneous Power Generation. Int. J. Hydrogen Energy. 2019, 44, 5389–5398. DOI: 10.1016/j.ijhydene.2018.08.123.
  • Bang, L.; Xiaoying, Z.; Gao, C.; Jiaxi, H.; Wanping, L.; Ming, S.; Lin, Y. The Art of Balance: Engineering of Structure Defects and Electrical Conductivity of α-MnO2 for Oxygen Reduction Reaction. Electrochim. Acta. 2018, 283, 459–466. DOI: 10.1016/j.electacta.2018.06.195.
  • Kolkovskyi, P.; Rachiy, B.; Ostafiychuk, B.; Kolkovska, H.; Lisovskyy, R.; Vyshnevskyi, O. Synthesis and Electrochemical Properties of α and β Modifications of MnO2 for Supercapacitors Application. JNanoR. 2022, 71, 111–119. DOI: 10.4028/www.scientific.net/JNanoR.71.111.
  • Yaremiy, I.; Yaremiy, S.; Fedoriv, V.; Vlasii, O.; Luсas, A. X-Ray Diagnostics of the Structure of near-Surface Layers of Ion-Implanted Monocrystalline Materials. J. Enterp. Technol. 2018, 5, 61–67. DOI: 10.15587/1729-4061.2018.151806.
  • Kopayev, A. V.; Mokljak, V. V.; Gasyuk, I. M.; Yaremiy, I. P.; Kozub, V. V. Structure Ordering in Mg-Zn Ferrite Nanopowders Obtained by the Method of Sol-Gel Autocombustion. SSP. 2015, 230, 114–119. DOI: 10.4028/www.scientific.net/SSP.230.114.
  • Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Francisco, R.; Rouquerol, J.; Sing, K. S. W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. DOI: 10.1515/pac-2014-1117.
  • Kausar, A. Enhanced Electrical and Thermal Conductivity of Modified Poly(Acrylonitrile-Co-Butadiene)-Based Nanofluid Containing Functional Carbon Black-Graphene Oxide. Fuller. Nano. Carbon Nanostruct. 2016, 24, 278–285. DOI: 10.1080/1536383X.2016.1153467.
  • Dhahri, A.; Dhahri, E.; Hlil, E. K. Electrical Conductivity and Dielectric Behaviour of Nanocrystalline La0.6Gd0.1Sr0.3Mn0.75Si0.25O3. RSC Adv. 2018, 8, 9103–9111. DOI: 10.1039/c8ra00037a.
  • Almond, D.; West, A. Mobile Ion Concentrations in Solid Electrolytes from an Analysis of A.C. conductivity. Solid State Ionics. 1983, 9–10, 277–282. DOI: 10.1016/0167-2738(83)90247-3.
  • Hsiang, H.-I.; Hsi, C.-S.; Tsai, C.-Y.; Mei, L.-T. Cobalt-Substitution Effects on Dielectric Properties of CuZn Ferrites. Ceram. Int. 2015, 41, 4140–4144. DOI: 10.1016/j.ceramint.2014.11.110.
  • Anantha, P. S.; Hariharan, K. Ac Conductivity Analysis and Dielectric Relaxation Behaviour of NaNO3–Al2O3 Composites. Mater. Sci. Eng. B. 2005, 121, 12–19. DOI: 10.1016/j.mseb.2004.12.005.
  • Tsuda, N.; Nasu, K.; Yanase, A.; Siratori, K. Electronic Conduction in Oxides, Edition Number 2; Springer Berlin: Heidelberg, Germany, 2000; p 372.
  • Liang, B.; Han, D.; Sun, C.; Zhang, W.; Zhang, Y.; Zhang, R. Carbon Black-Modified SnO Nanocomposites with Improved Photocatalytic Activity. Fuller. Nano. Carbon Nanostruct. 2018, 26, 751–755. DOI: 10.1080/1536383X.2018.1494157.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.