0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Wear characteristics of a CNTs reinforced aluminium composited fabricated by the solution mixing process

, , , , &
Received 29 Apr 2024, Accepted 17 Jul 2024, Published online: 26 Jul 2024

References

  • Kumar, N.; Soren, S.; Nirala, A.; Almakayeel, N.; Yunus Khan, T. M.; Khan, M. A. Distribution of Carbon Nanotubes in an Aluminum Matrix by a Solution-Mixing Process. ACS Omega. 2023, 8, 33845–33856. DOI: 10.1021/acsomega.3c04531.
  • Nirala, A.; Soren, S.; Kumar, N.; Shrivastava, Y.; Kamal, R.; Al-Mansour, A. I.; Alam, S. Assessing the Mechanical Properties of a New High Strength Aluminum Hybrid MMC Based on the ANN Approach for Automotive Application. Materials (Basel) 2022, 15, 2015. DOI: 10.3390/ma15062015.
  • Rosenberger, M. R.; Forlerer, E.; Schvezov, C. E. Wear Behavior of AA1060 Reinforced with Alumina under Different Loads. Wear 2009, 266, 356–359. DOI: 10.1016/j.wear.2008.06.007.
  • Rahimian, M.; Parvin, N.; Ehsani, N. Investigation of Particle Size and Amount of Alumina on Microstructure and Mechanical Properties of Al Matrix Composite Made by Powder Metallurgy. Mater. Sci. Eng. A 2010, 527, 1031–1038. DOI: 10.1016/j.msea.2009.09.034.
  • Dasgupta, R. Aluminium Alloy-Based Metal Matrix Composites: A Potential Material for Wear Resistant Applications. ISRN Metall. 2012, 2012, 1–14. DOI: 10.5402/2012/594573.
  • Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. DOI: 10.1038/354056a0.
  • Popov, V. Carbon Nanotubes: Properties and Application. Mater. Sci. Eng. R Rep. 2004, 43, 61–102. DOI: 10.1016/j.mser.2003.10.001.
  • Ajayan, P. M.; Schadler, L. S.; B, P. V. Nanocomposite Science and Technology; John Wiley & Sons: New Jersey, 2006.
  • Choi, H. J.; Lee, S. M.; Bae, D. H. Wear Characteristic of Aluminum-Based Composites Containing Multi-Walled Carbon Nanotubes. Wear 2010, 270, 12–18. DOI: 10.1016/j.wear.2010.08.024.
  • Bakshi, S. R.; Agarwal, A. An Analysis of the Factors Affecting Strengthening in Carbon Nanotube Reinforced Aluminum Composites. Carbon N. Y. 2011, 49, 533–544. DOI: 10.1016/j.carbon.2010.09.054.
  • Dorri Moghadam, A.; Omrani, E.; Menezes, P. L.; Rohatgi, P. K. Mechanical and Tribological Properties of Self-Lubricating Metal Matrix Nanocomposites Reinforced by Carbon Nanotubes (CNTs) and Graphene – A Review. Compos. B Eng. 2015, 77, 402–420. DOI: 10.1016/j.compositesb.2015.03.014.
  • Kim, I.-Y.; Lee, J.-H.; Lee, G.-S.; Baik, S.-H.; Kim, Y.-J.; Lee, Y.-Z. Friction and Wear Characteristics of the Carbon Nanotube–Aluminum Composites with Different Manufacturing Conditions. Wear 2009, 267, 593–598. DOI: 10.1016/j.wear.2008.12.096.
  • Al-Qutub, A. M.; Khalil, A.; Saheb, N.; Hakeem, A. S. Wear and Friction Behavior of Al6061 Alloy Reinforced with Carbon Nanotubes. Wear 2013, 297, 752–761. DOI: 10.1016/j.wear.2012.10.006.
  • Zhou, S.; Zhang, X.; Ding, Z.; Min, C.; Xu, G.; Zhu, W. Fabrication and Tribological Properties of Carbon Nanotubes Reinforced Al Composites Prepared by Pressureless Infiltration Technique. Compos. A Appl. Sci. Manuf. 2007, 38, 301–306. DOI: 10.1016/j.compositesa.2006.04.004.
  • Mohammed, S. M. A. K.; Chen, D. L. Carbon Nanotube‐Reinforced Aluminum Matrix Composites. Adv. Eng. Mater. 2020, 22, 1901176. DOI: 10.1002/adem.201901176.
  • Hashim, H.; Salleh, M. S.; Omar, M. Z. Homogenous Dispersion and Interfacial Bonding of Carbon Nanotube Reinforced with Aluminum Matrix Composite: A Review. Rev. Adv. Mater. Sci. 2019, 58, 295–303. DOI: 10.1515/rams-2019-0035.
  • Bhoi, N. K.; Singh, H.; Pratap, S. Developments in the Aluminum Metal Matrix Composites Reinforced by Micro/Nano Particles – A Review. J. Compos. Mater. 2020, 54, 813–833. DOI: 10.1177/0021998319865307.
  • Pérez-Bustamante, R.; Gómez-Esparza, C. D.; Estrada-Guel, I.; Miki-Yoshida, M.; Licea-Jiménez, L.; Pérez-García, S. A.; Martínez-Sánchez, R. Microstructural and Mechanical Characterization of Al–MWCNT Composites Produced by Mechanical Milling. Mater. Sci. Eng. A 2009, 502, 159–163. DOI: 10.1016/j.msea.2008.10.047.
  • Chen, B.; Shen, J.; Ye, X.; Imai, H.; Umeda, J.; Takahashi, M.; Kondoh, K. Solid-State Interfacial Reaction and Load Transfer Efficiency in Carbon Nanotubes (CNTs)-Reinforced Aluminum Matrix Composites. Carbon N. Y. 2017, 114, 198–208. DOI: 10.1016/j.carbon.2016.12.013.
  • Cao, L.; Chen, B.; Wan, J.; Kondoh, K.; Guo, B.; Shen, J.; Li, J. S. Superior High-Temperature Tensile Properties of Aluminum Matrix Composites Reinforced with Carbon Nanotubes. Carbon N. Y. 2022, 191, 403–414. DOI: 10.1016/j.carbon.2022.02.009.
  • Jiang, L.; Li, Z.; Fan, G.; Cao, L.; Zhang, D. The Use of Flake Powder Metallurgy to Produce Carbon Nanotube (CNT)/Aluminum Composites with a Homogenous CNT Distribution. Carbon N. Y. 2012, 50, 1993–1998. DOI: 10.1016/j.carbon.2011.12.057.
  • Peng, T.; Chang, I. Uniformly Dispersion of Carbon Nanotube in Aluminum Powders by Wet Shake-Mixing Approach. Powder Technol. 2015, 284, 32–39. DOI: 10.1016/j.powtec.2015.06.039.
  • Liu, Z. Y.; Zhao, K.; Xiao, B. L.; Wang, W. G.; Ma, Z. Y. Fabrication of CNT/Al Composites with Low Damage to CNTs by a Novel Solution-Assisted Wet Mixing Combined with Powder Metallurgy Processing. Mater. Des. 2016, 97, 424–430. DOI: 10.1016/j.matdes.2016.02.121.
  • Fan, G.; Jiang, Y.; Tan, Z.; Guo, Q.; Xiong, D.; Su, Y.; Lin, R.; Hu, L.; Li, Z.; Zhang, D. Enhanced Interfacial Bonding and Mechanical Properties in CNT/Al Composites Fabricated by Flake Powder Metallurgy. Carbon N. Y. 2018, 130, 333–339. DOI: 10.1016/j.carbon.2018.01.037.
  • Poirier, D.; Gauvin, R.; Drew, R. A. L. Structural Characterization of a Mechanically Milled Carbon Nanotube/Aluminum Mixture. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1482–1489. DOI: 10.1016/j.compositesa.2009.05.025.
  • Simões, S.; Viana, F.; Reis, M. A. L.; Vieira, M. F. Improved Dispersion of Carbon Nanotubes in Aluminum Nanocomposites. Compos. Struct. 2014, 108, 992–1000. DOI: 10.1016/j.compstruct.2013.10.043.
  • Jagannatham, M.; Chandran, P.; Sankaran, S.; Haridoss, P.; Nayan, N.; Bakshi, S. R. Tensile Properties of Carbon Nanotubes Reinforced Aluminum Matrix Composites: A Review. Carbon N. Y. 2020, 160, 14–44. DOI: 10.1016/j.carbon.2020.01.007.
  • Esawi, A. M. K.; Morsi, K.; Sayed, A.; Taher, M.; Lanka, S. The Influence of Carbon Nanotube (CNT) Morphology and Diameter on the Processing and Properties of CNT-Reinforced Aluminium Composites. Compos. Part A Appl. Sci. Manuf. 2011, 42, 234–243. DOI: 10.1016/j.compositesa.2010.11.008.
  • Ogawa, F.; Masuda, C. Fabrication and the Mechanical and Physical Properties of Nanocarbon-Reinforced Light Metal Matrix Composites: A Review and Future Directions. Mater. Sci. Eng. A 2021, 820, 141542. DOI: 10.1016/j.msea.2021.141542.
  • Hasan, M. S.; Wong, T.; Rohatgi, P. K.; Nosonovsky, M. Analysis of the Friction and Wear of Graphene Reinforced Aluminum Metal Matrix Composites Using Machine Learning Models. Tribol. Int. 2022, 170, 107527. DOI: 10.1016/j.triboint.2022.107527.
  • Padmavathi, K. R.; Ramakrishnan, R. Tribological Behaviour of Aluminium Hybrid Metal Matrix Composite. Procedia Eng. 2014, 97, 660–667. DOI: 10.1016/j.proeng.2014.12.295.
  • Bastwros, M. M. H.; Esawi, A. M. K.; Wifi, A. Friction and Wear Behavior of Al–CNT Composites. Wear 2013, 307, 164–173. DOI: 10.1016/j.wear.2013.08.021.
  • Bakshi, S. R.; Keshri, A. K.; Agarwal, A. A Comparison of Mechanical and Wear Properties of Plasma Sprayed Carbon Nanotube Reinforced Aluminum Composites at Nano and Macro Scale. Mater. Sci. Eng. A 2011, 528, 3375–3384. DOI: 10.1016/j.msea.2011.01.061.
  • Kwon, H.; Park, D. H.; Silvain, J. F.; Kawasaki, A. Investigation of Carbon Nanotube Reinforced Aluminum Matrix Composite Materials. Compos. Sci. Technol. 2010, 70, 546–550. DOI: 10.1016/j.compscitech.2009.11.025.
  • Rajesh A M; Doddamani, S.; K, M. K.; Bharath K N. Dry Sliding Wear Simulation of Hybrid Aluminum Metal Matrix Composites. Adv. Compos. Hybrid Mater. 2020, 3 (1), 120–126. DOI: 10.1007/s42114-020-00133-9.
  • Põdra, P.; Andersson, S. Simulating Sliding Wear with Finite Element Method. Tribol. Int. 1999, 32, 71–81. DOI: 10.1016/S0301-679X(99)00012-2.
  • Thompson, J. M.; Thompson, M. K. 2006 Proposal for the Calculation of Wear. Proc. 2006 Int. ansys Users Conf. Exhib.
  • Lavagna, L.; Marchisio, S.; Merlo, A.; Nisticò, R.; Pavese, M. Polyvinyl Butyral‐Based Composites with Carbon Nanotubes: Efficient Dispersion as a Key to High Mechanical Properties. Polym. Compos. 2020, 41, 3627–3637. DOI: 10.1002/pc.25661.
  • Yan, L.; Tan, Z.; Ji, G.; Li, Z.; Fan, G.; Schryvers, D.; Shan, A.; Zhang, D. A Quantitative Method to Characterize the Al 4 C 3 -Formed Interfacial Reaction: The Case Study of MWCNT/Al Composites. Mater. Charact. 2016, 112, 213–218. DOI: 10.1016/j.matchar.2015.12.031.
  • Simões, S.; Viana, F.; Reis, M. A. L.; Vieira, M. F. Influence of Dispersion/Mixture Time on Mechanical Properties of Al–CNTs Nanocomposites. Compos. Struct. 2015, 126, 114–122. DOI: 10.1016/j.compstruct.2015.02.062.
  • Mezlini, S.; Kapsa, P.; Abry, J. C.; Meille, G.; Ribes, H.; Dif, R. Relationship between Hardness and Abrasive Wear for Some Aluminium Alloys. MSF. 2002, 396–402, 1517–1524. DOI: 10.4028/www.scientific.net/MSF.396-402.1517.
  • Jahanmir, S.; Suh, N. P.; Abrahamson, E. P. The Delamination Theory of Wear and the Wear of a Composite Surface. Wear 1975, 32, 33–49. DOI: 10.1016/0043-1648(75)90203-3.
  • Prasad, R.; Soren, S.; Kumaraswamidhas, L. A.; Pandey, C.; Pan, S. K. Experimental Investigation of Different Fineness and Firing Temperatures on Pellets Properties of Different Iron Ore Fines from Indian Mines. Materials (Basel) 2022, 15, 4220. DOI: 10.3390/ma15124220.
  • Farhadian, A.; Ghasemi, E.; Hoseinie, S. H.; Bagherpour, R. Investigating the Effect of Operating Parameters on the Wear of Abrasive Tools in the Polishing Stage of Granitic Building Stones. Lubricants 2022, 10, 321. DOI: 10.3390/lubricants10110321.
  • Dixit, T.; Prasad, K. E. Effect of Temperature and Sliding Velocity on the Dry Sliding Wear Mechanisms of Boron Modified Ti-6Al-4V Alloys. Lubricants 2022, 10, 296. DOI: 10.3390/lubricants10110296.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.