0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

SnO wrap on SnS reinforced thermoelectric properties of CF/EG cement matrix composites

, , , , & ORCID Icon
Received 08 May 2024, Accepted 17 Jul 2024, Published online: 25 Jul 2024

References

  • Mammeri, A.; Ulmet, L.; Petit, C.; Mokhtari, A. Temperature Modelling in Pavements: The Effect of Long-and Short-Wave Radiation. Int. J. Pavement Eng. 2015, 16, 198–213. DOI: 10.1080/10298436.2014.937809.
  • Liu, X.; Jani, R.; Orisakwe, E.; Johnston, C.; Chudzinski, P.; Qu, M.; Norton, B.; Holmes, N.; Kohanoff, J.; Stella, L.; et al. State of the Art in Composition, Fabrication, Characterization, and Modeling Methods of Cement-Based Thermoelectric Materials for Low-Temperature Applications. Renew. Sustain. Energy Rev. 2021, 137, 110361. DOI: 10.1016/j.rser.2020.110361.
  • Mendes, J. C.; Barreto, R. R.; de Paula, A. C. B.; Elói, F.; Brigolini, G. J.; Peixoto, R. A. F. On the Relationship between Morphology and Thermal Conductivity of Cement-Based Composites. Cem. Concr. Compos. 2019, 104, 103365. DOI: 10.1016/j.cemconcomp.2019.103365.
  • Sun, M.; Li, Z.; Mao, Q.; Shen, D. Study on the Hole Conduction Phenomenon in Carbon Fiber-Reinforced Concrete. Cem. Concr. Res. 1998, 28, 549–554. DOI: 10.1016/S0008-8846(98)00011-8.
  • Cao, H. Y.; Yao, W.; Qin, J. J. Seebeck Effect in Graphite-Carbon Fiber Cement Based Composite. Adv. Mater. Res. 2010, 177, 566–569. DOI: 10.4028/www.scientific.net/AMR.177.566.
  • Wen, S.; Chung, D. D. L. Seebeck Effect in Carbon Fiber-Reinforced Cement. Cem. Concr. Res. 1999, 29, 1989–1993. DOI: 10.1016/S0008-8846(99)00185-4.
  • Wen, S.; Chung, D. D. L. Seebeck Effect in Steel Fiber Reinforced Cement. Cem. Concr. Res. 2000, 30, 661–664. DOI: 10.1016/S0008-8846(00)00205-2.
  • Zuo, J. Q.; Yao, W.; Qin, J. J. Enhancing the Thermoelectric Properties in Carbon Fiber/Cement Composites by Using Steel Slag. Key Eng. Mater. 2013, 539, 103–107. DOI: 10.4028/www.scientific.net/KEM.539.103.
  • Wei, J.; Wang, Y.; Li, X.; Jia, Z.; Qiao, S.; Jiang, Y.; Zhou, Y.; Miao, Z.; Gao, D.; Zhang, H.; et al. Dramatically Improved Thermoelectric Properties by Defect Engineering in Cement-Based Composites. ACS Appl. Mater. Interfaces 2021, 13, 3919–3929. DOI: 10.1021/acsami.0c18863.
  • Wei, J.; Zhao, L.; Zhang, Q.; Nie, Z.; Hao, L. Enhanced Thermoelectric Properties of Cement-Based Composites with Expanded Graphite for Climate Adaptation and Large-Scale Energy Harvesting. Energy Build. 2018, 159, 66–74. DOI: 10.1016/j.enbuild.2017.10.032.
  • Zuo, J.; Yao, W.; Wu, K. Seebeck Effect and Mechanical Properties of Carbon Nanotube-Carbon Fiber/Cement Nanocomposites. Fullerenes Nanotub. Carbon Nanostruct. 2014, 23, 383–391. DOI: 10.1080/1536383X.2013.863760.
  • Wei, J.; Miao, Z.; Wang, Y.; Zhou, Y.; Gao, D.; Zhang, H.; Qiao, M. Boosting Power Factor of Thermoelectric Cementitious Composites by a Unique CNT Pretreatment Process with Low Carbon Content. Energy Build. 2022, 254, 111617. DOI: 10.1016/j.enbuild.2021.111617.
  • Wei, Y.; Miao, Z.; Jia, Z.; Wang, Y.; Zhou, Y.; Zhang, H.; Wei, J. Synergy of Reduced Graphene Oxide and Metal Oxides Improves the Power Factor of Thermoelectric Cement Matrix Composites. Fullerenes Nanotub. Carbon Nanostruct. 2022, 30, 801–813. DOI: 10.1080/1536383X.2021.2024167.
  • Wei, J.; Jia, Z.; Wang, Y.; Jiang, Y.; Miao, Z.; Zhou, Y.; Zhang, H. Enhanced Thermoelectric Performance of Low Carbon Cement-Based Composites by Reduced Graphene Oxide. Energy Build. 2021, 250, 111279. DOI: 10.1016/j.enbuild.2021.111279.
  • Liu, X.; Liao, G.; Zuo, J. Enhanced Thermoelectric Properties of Carbon Fiber-Reinforced Cement Composites (CFRCs) Utilizing Bi2Te3 with Three Doping Methods. Fullerenes Nanotub. Carbon Nanostruct. 2021, 29, 295–303. DOI: 10.1080/1536383X.2020.1839425.
  • Rudradawong, C.; Kitiwan, M.; Goto, T.; Ruttanapun, C. Positive Ionic Conduction of Mayenite Cement Ca12Al14O33/Nano-Carbon Black Composites on Dielectric and Thermoelectric Properties. Mater. Today Commun. 2020, 22, 100820. DOI: 10.1016/j.mtcomm.2019.100820.
  • Vareli, I.; Tzounis, L.; Tsirka, K.; Kavvadias, I. E.; Tsongas, K.; Liebscher, M.; Elenas, A.; Gergidis, L. N.; Barkoula, N.-M.; Paipetis, A. S.; et al. High-Performance Cement/SWCNT Thermoelectric Nanocomposites and a Structural Thermoelectric Generator Device towards Large-Scale Thermal Energy Harvesting. J. Mater. Chem. C 2021, 9, 14421–14438. DOI: 10.1039/D1TC03495B.
  • Biswas, K.; He, J.; Blum, I. D.; Wu, C.-I.; Hogan, T. P.; Seidman, D. N.; Dravid, V. P.; Kanatzidis, M. G. High-Performance Bulk Thermoelectrics with All-Scale Hierarchical Architectures. Nature 2012, 489, 414–418. DOI: 10.1038/nature11439.
  • Jiang, B.; Wang, W.; Liu, S.; Wang, Y.; Wang, C.; Chen, Y.; Xie, L.; Huang, M.; He, J. High Figure-of-Merit and Power Generation in High-Entropy GeTe-Based Thermoelectrics. Science 2022, 377, 208–213. DOI: 10.1126/science.abq5815.
  • Zhou, B.; Li, S.; Li, W.; Li, J.; Zhang, X.; Lin, S.; Chen, Z.; Pei, Y. Thermoelectric Properties of SnS with Na-Doping. ACS Appl. Mater. Interfaces 2017, 9, 34033–34041. DOI: 10.1021/acsami.7b08770.
  • Zhao, L.-D.; Lo, S.-H.; He, J.; Li, H.; Biswas, K.; Androulakis, J.; Wu, C.-I.; Hogan, T. P.; Chung, D.-Y.; Dravid, V. P.; et al. High Performance Thermoelectrics from Earth-Abundant Materials: Enhanced Figure of Merit in PbS by Second Phase Nanostructures. J. Am. Chem. Soc. 2011, 133, 20476–20487. DOI: 10.1021/ja208658w.
  • Zhao, L.-D.; Lo, S.-H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals. Nature 2014, 508, 373–377. DOI: 10.1038/nature13184.
  • Li, C. W.; Hong, J.; May, A. F.; Bansal, D.; Chi, S.; Hong, T.; Ehlers, G.; Delaire, O. Orbitally Driven Giant Phonon Anharmonicity in SnSe. Nature Phys. 2015, 11, 1063–1069. DOI: 10.1038/nphys3492.
  • Carrete, J.; Mingo, N.; Curtarolo, S. Low Thermal Conductivity and Triaxial Phononic Anisotropy of SnSe. Appl. Phys. Lett. 2014, 105, 101907. DOI: 10.1063/1.4895770.
  • Chang, C.; Wu, M.; He, D.; Pei, Y.; Wu, C.-F.; Wu, X.; Yu, H.; Zhu, F.; Wang, K.; Chen, Y.; et al. 3D Charge and 2D Phonon Transports Leading to High out-of-Plane ZT in n-Type SnSe Crystals. Science 2018, 360, 778–783. DOI: 10.1126/science.aaq1479.
  • Sassi, S.; Candolfi, C.; Vaney, J.-B.; Ohorodniichuk, V.; Masschelein, P.; Dauscher, A.; Lenoir, B. Assessment of the Thermoelectric Performance of Polycrystalline p-Type SnSe. Appl. Phys. Lett. 2014, 104 (21): 105. DOI: 10.1063/1.4880817.
  • Aseginolaza, U.; Bianco, R.; Monacelli, L.; Paulatto, L.; Calandra, M.; Mauri, F.; Bergara, A.; Errea, I. Phonon Collapse and Second-Order Phase Transition in Thermoelectric SnSe. Phys. Rev. Lett. 2019, 122, 075901. DOI: 10.1103/PhysRevLett.122.075901.
  • Tan, Q.; Li, J.-F. Thermoelectric Properties of Sn-S Bulk Materials Prepared by Mechanical Alloying and Spark Plasma Sintering. J. Elec. Mater. 2014, 43, 2435–2439. DOI: 10.1007/s11664-014-3127-0.
  • Lanigan-Atkins, T.; Yang, S.; Niedziela, J. L.; Bansal, D.; May, A. F.; Puretzky, A. A.; Lin, J. Y. Y.; Pajerowski, D. M.; Hong, T.; Chi, S.; et al. Extended Anharmonic Collapse of Phonon Dispersions in SnS and SnSe. Nat. Commun. 2020, 11, 4430. DOI: 10.1038/s41467-020-18121-4.
  • Zhao, L.-D.; He, J.; Wu, C.-I.; Hogan, T. P.; Zhou, X.; Uher, C.; Dravid, V. P.; Kanatzidis, M. G. Thermoelectrics with Earth Abundant Elements: High Performance p-Type PbS Nanostructured with SrS and CaS. J. Am. Chem. Soc. 2012, 134, 7902–7912. DOI: 10.1021/ja301772w.
  • Albers, W.; Haas, C.; Vink, H.; Wasscher, J. Investigations on SnS. J. Appl. Phys. 1961, 32, 2220–2225. DOI: 10.1063/1.1777047.
  • He, Z.; Zhu, J.; Su, W.; An, X.; Zhao, C.; Yuan, W.; Lin, L.; Ang, R. Achieving High Quality Factor and Enhanced Thermoelectric Performance in Polycrystalline SnS by Ag Doping and Se Alloying. Appl. Phys. Lett. 2023, 123 (24). DOI: 10.1063/5.0180362.
  • Lili, Z. Study on Thermoelectric Properties of Cementitious Composites Reinforced with Carbon Materials. Dissertation, Xi’an University of Architecture and Technology, Xi’an, China, 2017.
  • Wei, J.; Fan, Y.; Zhao, L.; Xue, F.; Hao, L.; Zhang, Q. Thermoelectric Properties of Carbon Nanotube Reinforced Cement-Based Composites Fabricated by Compression Shear. Ceram. Int. 2018, 44, 5829–5833. DOI: 10.1016/j.ceramint.2018.01.074.
  • Liu, X.; Ma, W.; Zhang, Y.; Yue, J.; Li, T.; Zuo, J. Study on the Effect of Bi2Te3 Doping Mode on the Thermoelectric Properties of Carbon Fiber Cementitious Composites. Concr. Cem. Prod. 2020, 5, 56–60.
  • Liu, X.; Qu, M.; Nguyen, A. P. T.; Dilley, N. R.; Yazawa, K. Characteristics of New Cement-Based Thermoelectric Composites for Low-Temperature Applications. Constr. Build. Mater. 2021, 304, 124635. DOI: 10.1016/j.conbuildmat.2021.124635.
  • Singh, V. P.; Kumar, M.; Srivastava, R.; Vaish, R. Thermoelectric Energy Harvesting Using Cement-Based Composites: A Review. Mater. Today Energy 2021, 21, 100714. DOI: 10.1016/j.mtener.2021.100714.
  • Ghosh, S.; Harish, S.; Ohtaki, M.; Saha, B. B. Thermoelectric Figure of Merit Enhancement in Cement Composites with Graphene and Transition Metal Oxides. Mater. Today Energy 2020, 18, 100492. DOI: 10.1016/j.mtener.2020.100492.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.