0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

CSA-doped PANI-CNT nano composites for Ku band microwave shielding applications

ORCID Icon, , , , , & show all
Received 18 Jun 2024, Accepted 23 Jul 2024, Published online: 06 Aug 2024

References

  • Chameswary, J.; Jithesh, K.; George, S.; Raman, S.; Mohanan, P.; Sebastian, M. T. PTFE– SWNT Composite for Microwave Absorption Application. Mater. Lett. 2010, 64, 743–745. DOI: 10.1016/j.matlet.2009.12.051.[Mismatch]
  • Savi, P.; Ruscica, G.; Di Summa, D.; Natali Sora, I. Shielding Effectiveness Measurements of Drywall Panel Coated with Biochar Layers. Electronics 2022, 11, 2312. DOI: 10.3390/electronics11152312.
  • Liao, G.; Li, Q.; Zhao, W.; Pang, Q.; Gao, H.; Xu, Z. In-Situ Construction of Novel Silver Nanoparticle Decorated Polymeric Spheres as Highly Active and Stable Catalysts for Reduction of Methylene Blue Dye. Appl. Catal. A 2018, 549, 102–111. DOI: 10.1016/j.apcata.2017.09.034.
  • Sobha, A. P.; Sreekala, P. S.; Narayanankutty, S. K. Electrical, Thermal, Mechanical and Electromagnetic Interference Shielding Properties of PANI/FMWCNT/TPU Composites. Prog. Org. Coat. 2017, 113, 168–174. DOI: 10.1016/j.porgcoat.2017.09.001.
  • Sreekala, P. S.; John, H.; Aanandan, C. K. Studies on Anomalous Dispersion Behavior of PANI–CNT Composites for Enhanced Shielding Effectiveness in Various Microwave Bands. Appl. Phys. A 2020, 126, 389. DOI: 10.1007/s00339-020-03583-6.
  • Guanghua, G.; Tahir, C.; William, A. G. Energetic, Structure, Mechanical and Vibrational Properties of Single Walled Carbon Nano Tubes. Nano Technol. 1998, 9, 184.
  • Kaynak, A. Electromagnetic Shielding Effectiveness of Galvanostatically Synthesized Conducting Polypyrrole Films in the 300–2000 MHz Frequency Range. Mater. Res. Bull. 1996, 31, 845–860. DOI: 10.1016/0025-5408(96)00038-4.
  • Liu, X.; Wing Or, S.; Ho, S. L.; Cheung, C. C.; Leung, C. M.; Han, Z.; Geng, D.; Zhang, Z. Full X-Ku Band Microwave Absorption by Fe(Mn)/Mn7C3/C Core/Shell/Shell Structured Nanocapsules. J. Alloys Compd. 2011, 509, 9071–9075. DOI: 10.1016/j.jallcom.2011.06.031.
  • Xu, F.; Ma, L.; Huo, Q.; Gan, M.; Tang, J. Microwave Absorbing Properties and Structural Design of Microwave Absorbers Based on Polyaniline and Polyaniline/Magnetite Nanocomposite. J. Magn. Magn. Mater. 2015, 374, 311–316. DOI: 10.1016/j.jmmm.2014.08.071.
  • Pud, A.; Ogurtsov, N.; Korzhenko, A.; Shapoval, G. Some Aspects of Preparation Methods and Properties of Polyaniline Blends and Composites with Organic Polymers. Prog. Polym. Sci. 2003, 28, 1701–1753. DOI: 10.1016/j.progpolymsci.2003.08.001.
  • Oqla, F. M. A. L.; Sapuan, S. M.; Anwer, T.; Jawaid, M.; Hoque, M. E. Natural Fiber Reinforced Conductive Polymer Composites as Functional Materials: A Review. Synth. Met. 2015, 206, 42–54. DOI: 10.1016/j.synthmet.2015.04.014.
  • Zhang, Y.; Pan, T.; Yang, Z. Flexible Polyethylene Terephthalate/Polyaniline Composite Paper with Bending Durability and Effective Electromagnetic Shielding Performance. Chem. Eng. J. 2020, 389, 124433. DOI: 10.1016/j.cej.2020.124433.
  • Saini, P.; Choudhary, V.; Singh, B. P.; Mathur, R. B.; Dhawan, S. K. Polyaniline-MWCNT Nanocomposites for Microwave Absorption and EMI Shielding. Mater. Chem. Phys. 2009, 113, 919–926. DOI: 10.1016/j.matchemphys.2008.08.065.
  • Yuan, B.; Yu, L.; Sheng, L.; An, K.; Zhao, X. Comparison of Electromagnetic Interference Shielding Properties between Single-Wall Carbon Nanotube and Graphene Sheet/Polyaniline Composites. J. Phys. D: Appl. Phys. 2012, 45, 235108. DOI: 10.1088/0022-3727/45/23/235108.
  • Wang, Y.; Du, Y.; Xu, P.; Qiang, R.; Han, X. Recent Advances in Conjugated Polymer-Based Microwave Absorbing Materials. Polymers (Basel). 2017, 9, 29. DOI: 10.3390/polym9010029.
  • Sabet, M.; Jahangiri, H.; Ghashghaei, E. Improving Microwave Absorption of the Polyaniline by Carbon Nanotube and Needle-like Magnetic Nanostructures. Synth. Met. 2017, 224, 18–26. DOI: 10.1016/j.synthmet.2016.11.034.
  • Sharma, B. K.; Khare, N.; Sharma, R.; Dhawan, S. K.; Vankar, V. D.; Gupta, H. C. Dielectric Behavior of polyaniline-CNTs Composite in Microwave Region. Compos. Sci. Technol. 2009, 69, 1932–1935. DOI: 10.1016/j.compscitech.2009.04.012.
  • Zhang, D.; Yang, X.; Cheng, J.; Lu, M.; Zhao, B.; Cao, M. Facile Preparation, Characterization, and Highly Effective Microwave Absorption Performance of CNTs/Fe3O4/PANI Nanocomposites. J. Nano 2013, 2013, 591893.
  • Yu. Yablokov, M.; Shevchenko, V. G.; Mukhortov, L. A.; Ozerin, A. N. Electromagnetic Interference Shielding of Carbon Nanotube-Fluoropolymer Elastomer Composites with Layered Structure. Fullerenes Nanotubes Carbon Nanostruct. 2020, 28, 267–271. DOI: 10.1080/1536383X.2019.1697685.
  • Abed, M. Y.; Youssif, M. A.; Aziz, H. A.; Shenashen, M. A. Synthesis and Enhancing Electrical Properties of PANI and PPA Composites. Egypt. J. Pet. 2014, 23, 271–277. DOI: 10.1016/j.ejpe.2014.08.003.
  • Mazrouaa, A. M.; Mansour, N. A.; Abed, M. Y.; Youssif, M. A.; Shenashen, M. A.; Awual, M. R. Nano-Composite Multi-Wall Carbon Nanotubes Using Poly (p-Phenylene Terephthalamide) for Enhanced Electric Conductivity. J. Environ. Chem. Eng. 2019, 7, 103002. DOI: 10.1016/j.jece.2019.103002.
  • Karim, M. R.; Lee, C. J.; Park, Y. T.; Lee, M. S. SWNTs Coated by Conducting Polyaniline: Synthesis and Modified Properties. Synth. Met. 2005, 151, 131–135. DOI: 10.1016/j.synthmet.2005.03.012.
  • Li, N.; Huang, Y.; Du, F.; He, X.; Lin, X.; Gao, H.; Ma, Y.; Li, F.; Chen, Y.; Eklund, P. C. Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites. Nano Lett. 2006, 6, 1141–1145. DOI: 10.1021/nl0602589.
  • Nandapure, B.; Kondawar, S.; Salunkhe, M.; Nandapure, A. Magnetic and Transport Properties of Conducting Polyaniline/Nickel Oxide Nanocomposites. Adv. Mater. Lett. 2013, 4(2), 134–140.
  • Kushwah, B. S.; Upadhyaya, S. C.; Shukla, S.; Singh Sikarwar, A.; Sengar, R. M. S.; Bhadauria, S. Performance of Nanopolyaniline-Fungal Enzyme Based Biosensor for Water Pollution. Adv. Mater. Lett. 2012, 2, 43–51. DOI: 10.5185/amlett.2010.8149.
  • David, T.; Mathad, J. K.; Padmavathi, T.; Vanaja, A. Part-A: Synthesis of Polyaniline and Carboxylic Acid Functionalized SWCNT Composites for Electromagnetic Interference Shielding Coatings. Polymer 2014, 55, 5665–5672. DOI: 10.1016/j.polymer.2014.09.007.
  • Amrithesh, M.; Aravind, S.; Jayalekshmi, S.; Jayasree, R. S. Polyaniline Doped with Orthophosphoric acid - A Material with Prospects for Optoelectronic Applications. J. Alloys Compd. 2008, 458, 532–535. DOI: 10.1016/j.jallcom.2007.04.034.
  • Zhang, X.; Zhang, J.; Liu, Z. Tubular Composite of Doped Polyaniline with Multi-Walled Carbon Nanotubes. Appl. Phys. A 2005, 80, 1813–1817. DOI: 10.1007/s00339-003-2491-z.
  • Liu, S.; Yue, J.; Wehmschulte, R. J. Large Thick Flattened Carbon Nanotubes. Nano Lett. 2002, 2, 1439–1442. DOI: 10.1021/nl0257869.
  • Rahayu, I.; Eddy, D. R.; Novianty, A. R.; Rukiah Anggreni, A.; Bahti, H.; Hidayat, S. The Effect of Hydrochloric Acid-Doped Polyaniline to Enhance the Conductivity. IOP Conf. Ser: Mater. Sci. Eng. 2019, 509, 012051.
  • Jelmy, E. J.; Ramakrishnan, S.; Kothurkar, N. K. EMI Shielding and Microwave Absorption Behavior of Au-MWCNT/Polyaniline Nanocomposites. Polym. Adv. Technol. 2016, 27, 1246–1257. DOI: 10.1002/pat.3790.
  • Wang, S.; Niu, M.; Xu, D. A Frequency-Varying Method for Simultaneous Measurement of Complex Permittivity and Permeability with an Open-Ended Coaxial Probe. IEEE Trans. Microwave Theory Technol. 1998, 46, 2145–2147.
  • Yousefi, L.; Boybay, M. S.; Ramahi, O. M. Characterization of Metamaterials Using a Strip Line Fixture. IEEE Trans. Antennas Propagat. 2011, 59, 1245–1253. DOI: 10.1109/TAP.2011.2109360.
  • Moniruzzaman, M.; Winey, K. I. Polymer Nanocomposites Containing Carbon Nanotubes. Macromolecules 2006, 39, 5194–5205. DOI: 10.1021/ma060733p.
  • Phang, S. W.; Hino, T.; Abdullah, M. H.; Kuramoto, N. Applications of Polyaniline Doubly Doped with p-Toluene Sulphonic Acid and Dichloroacetic Acid as Microwave Absorbing and Shielding Materials. Mater. Chem. Phys. 2007, 104, 327–335. DOI: 10.1016/j.matchemphys.2007.03.031.
  • Chen, L. F.; Ong, C. K.; Neo, C. P.; Varadan, V. V.; Varadan, V. K. Microwave Electronics: Measurement and Materials Characterization. John Wiley & Sons, 2004.
  • Jelmy, E. J.; Lakshmanan, M.; Kothurkar, N. K. Microwave Absorbing Behavior of Glass Fiber Reinforced MWCNT-PANi/Epoxy Composite Laminates. Mater. Today: Proc. 2020, 26, 36–43. DOI: 10.1016/j.matpr.2019.04.203.
  • Sreekala, P. S.; Libi Mol, V.; George, D. M.; Lindo, A.; Pushkaran, N. K.; John, H.; Aanandan, C. Electromagnetic Interference Shielding Efficiency Enhancement of the PANI-CSA Films at Broad Band Frequencies. PIER M 2017, 57, 163–174. DOI: 10.2528/PIERM17032205.
  • Zhang, Y.; Qiu, M.; Yu, Y.; Wen, B.; Cheng, L. A Novel Polyaniline-Coated Bagasse Fiber Composite with Core–Shell Heterostructure Provides Effective Electromagnetic Shielding Performance. ACS Appl. Mater. Interfaces 2017, 9, 809–818. DOI: 10.1021/acsami.6b11989.
  • Sun, X. G.; Gao, M.; Li, C.; Yiqiang, W. Microwave Absorption Characteristics of Carbon Nanotubes, Nanchang University, Sun Nanotech Co Ltd China: Nanchang, 2010.
  • Song, W. L.; Cao, M. S.; Hou, Z. L.; Fang, X. Y.; Shi, X. L.; Yuan, J. High Dielectric Loss and Its Monotonic Dependence of Conducting-Dominated Multiwalled Carbon Nanotubes/Silica Nanocomposite on Temperature Ranging from 373 to 873 K in X-Band. Appl. Phys. Lett. 2009, 94, 233110. DOI: 10.1063/1.3152764.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.