0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nano-carbon octadecahedron: in situ carbonization of DTAB of aggregates in concentrated calcium chloride solution

, &
Received 18 Jul 2024, Accepted 26 Jul 2024, Published online: 02 Aug 2024

References

  • Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. DOI: 10.1038/354056a0.
  • Sahu, S.; Khan, M. S.; Gupta, N.; Chennakesavulu, K.; Sasikumar, C. The Hydrogen Storage Capacity of Carbon Nano-Onions Fabricated by Thermal Chemical Vapour Deposition. Int. J. Hydrogen Energy 2024, 52, 1371–1383. DOI: 10.1016/j.ijhydene.2023.03.156.
  • Zhou, G.; Wu, H.; Deng, Y.; Miao, R.; Lai, D.; Deng, J.; Zhang, J.; Chen, Q.; Shao, Q.; Shao, C. Synthesis of High-Quality Multi-Walled Carbon Nanotubes by Arc Discharge in Nitrogen Atmosphere. Vacuum 2024, 225, 113198. DOI: 10.1016/j.vacuum.2024.113198.
  • Cintra, I. L. R.; Baldan, M. R.; Anjos, E. G. R.; Silva, T. F.; Guerrini, L. M.; Rezende, M. C.; Botelho, E. C. Processing and Characterization of Carbon Nanofibers Obtained from PAN/Lignin Blends Processed by Electrospinning. Polym. Eng. Sci. 2023, 63, 1246–1262. DOI: 10.1002/pen.26279.
  • J B, M.; M, H. K. A Comparative Study of Carbon Nanotube Characteristics Synthesized from Various Biomass Precursors through Hydrothermal Techniques and Their Potential Applications. Chem. Eng. Commun. 2020, 209, 127–139. DOI: 10.1080/00986445.2020.1845660.
  • Manjubaashini, N.; Bargavi, P.; Balakumar, S. Carbon Quantum Dots Derived from Agro Waste Biomass for Pioneering Bioanalysis and in Vivo Bioimaging. J. Photochem. Photobiol. A 2024, 454, 115702. DOI: 10.1016/j.jphotochem.2024.115702.
  • Luo, Y.; Lu, T.; Jin, S.; Ye, K.; Yu, S.; Zhang, X.; Wu, X.; Ma, P.; Tester, J. W.; Wang, K. Elucidating the Intrinsic Core-Shell Structure of Carbon Nanospheres from Glucose Hydrothermal Carbonization. J. Supercrit. Fluids 2024, 210, 106290. DOI: 10.1016/j.supflu.2024.106290.
  • Liang, J.; Ender, C. P.; Rohrbeck, P.; Graf, R.; Lieberwirth, I.; Räder, H.-J.; Wagner, M.; Weber, S. A. L.; Müllen, K.; Weil, T. High Pressure Induced Formation of Carbon Nanorods from Tetracosane. Diamond Relat. Mater. 2024, 143, 110913. DOI: 10.1016/j.diamond.2024.110913.
  • Ning, M.; Qiu, G.; Wang, X.; Li, B.; Li, Z.; Zhang, H. Ultrathin Carbon Nanosheets with Carbon Composite Structure of Amorphous Carbon and Pseudo-Graphite Domains for High-Capacity, Stable and Fast Potassium Storage. J. Power Sources 2024, 604, 234421. DOI: 10.1016/j.jpowsour.2024.234421.
  • Zhao, G.; Yu, D.; Chen, C.; Sun, L.; Yang, C.; Zhang, H.; Du, B.; Sun, F.; Sun, Y.; Yu, M. One-Step Production of Carbon Nanocages for Supercapacitors and Sodium-Ion Batteries. Electroanal. Chem. 2020, 878, 114551. DOI: 10.1016/j.jelechem.2020.114551.
  • Chu, Y.; Sun, L.; Wang, J.; Han, Z.; Wei, C.; Han, C.; Yan, H. Carbon Nanotube Films with Fewer Impurities and Higher Conductivity from Aqueously Mono-Dispersed Solution via Two-Step Filtration for Electric Heating. Nanomaterials (Basel) 2024, 14, 911. DOI: 10.3390/NANO14110911.
  • Sridharan, R.; Monisha, B.; Senthil Kumar, P.; Veena Gayathri, K. Carbon Nanomaterials and Its Applications in Pharmaceuticals: A Brief Review. Chemosphere 2022, 294, 133731. DOI: 10.1016/J.CHEMOSPHERE.2022.133731.
  • Wani, A. K.; Khan, Z.; Sena, S.; Akhtar, N.; Alreshdi, M. A.; Yadav, K. K.; Alkahtani, A. M.; Wani, A. W.; Rahayu, F.; Tafakresnanto, C.; et al. Carbon Nanotubes in Plant Dynamics: Unravelling Multifaceted Roles and Phytotoxic Implications. Plant Physiol. Biochem. 2024, 210, 108628. DOI: 10.1016/J.PLAPHY.2024.108628.
  • Du, B.; Li, H.; Zhang, C.; Ji, Q. Synthesis of Newly Discovered Carbon Nanoframes: A Self‐Assembly Strategy Based on DTAB @ NaCl. Adv. Mater. Inter. 2024, 11, 2300832. DOI: 10.1002/admi.202300832.
  • Yan, L.; Balasubramanian, G. Examining the Hydration Behavior of Aqueous Calcium Chloride (CaCl2) Solution via Atomistic Simulations. Phychem 2023, 3, 319–331. DOI: 10.3390/physchem3030022.
  • Wang, Y.; Tang, J.; Zhang, N. High-Coordinated Ca(II)-Chloro Ion Clusters in the Concentrated CaCl2 Aqueous Solution: A Molecular Dynamics Simulation Study. J. Salt Lake Res. 2020, 8, 34–42. DOI: 10.12119/j.yhyj.202003004.
  • Varga, M.; Izak, T.; Vretenar, V.; Kozak, H.; Holovsky, J.; Artemenko, A.; Hulman, M.; Skakalova, V.; Lee, D. S.; Kromka, A. Diamond/Carbon Nanotube Composites: Raman, FTIR and XPS Spectroscopic Studies. Carbon 2017, 111, 54–61. DOI: 10.1016/j.carbon.2016.09.064.
  • Andrews, R. J.; Smith, C. F.; Alexander, A. J. Mechanism of Carbon Nanotube Growth from Camphor and Camphor Analogs by Chemical Vapor Deposition. Carbon 2006, 44, 341–347. DOI: 10.1016/j.carbon.2005.07.025.
  • Ramakrishnan, A.; Swaminathan, S.; Mayandi, J. Simple and Scalable Green Approach for Synthesizing Hierarchically Porous Hexagonal Shaped 3D Carbon Structure for Sodium‐Ion Storage. ChemistrySelect 2023, 8, e202323098. DOI: 10.1002/slct.202303098.
  • Campos, J. L. E.; Miranda, H.; Rabelo, C.; Sandoz-Rosado, E.; Pandey, S.; Riikonen, J.; Cano-Marquez, A. G.; Jorio, A. Applications of Raman Spectroscopy in Graphene‐Related Materials and the Development of Parameterized PCA for Large‐Scale Data Analysis. J. Raman Spectrosc. 2018, 49, 54–65. DOI: 10.1002/jrs.5225.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.