99
Views
37
CrossRef citations to date
0
Altmetric
Original

Alteration of Nitric Oxide Production in Rats Exposed to a Prolonged, Extremely Low-Frequency Magnetic Field

, , &
Pages 99-106 | Published online: 07 Jul 2009

References

  • Aksen, F., Akdag, M. Z., Meric, F., Cureoglu, S., Yilmaz, F., Kaya, A. (2002). The effects of extremely low frequency magnetic field on inner ear, parotis and submandibular gland. Biotechnol. Biotechnological Equip. 16:196–99.
  • Bawin, S. M., Satmary, W. M., Jones, R. A., Adey, W. R., Zimmerman, G. (1996). Extremely-low-frequency magnetic fields disrupt rhythmic slow activity in rat hippocampal slices. Bioelectromagnetics 17:388–395.
  • Blank, M. (1995a). Electric stimulation of protein synthesis in muscle. Adv. Chem. 250:143–153.
  • Blank, M. (1995b). Electric and magnetic field signal transduction in the membrane Na-K ATPase. Adv. Chem. 250:339–348.
  • Chou, T. C., Yen, M. H., Li, C. Y., Ding, Y. A. (1998). Alterations of nitric oxide synthase expression with aging and hypertension in rats. Hypertension 31:643–648.
  • Cortas, N. K., Wakid, N. W. (1990). Determination of inorganic nitrate in serum and urine by a kinetic cadmium-reduction method. Clin. Chem.. 36:1440–1443.
  • Diniz, P., Soejima, K., Ito, G. (2002). Nitric oxide mediates the effects of pulsed electromagnetic field stimulation on the osteoblast proliferation and differentiation. Nitric Oxide 7:18–23.
  • Fadel, M. A., Wael, S. M., Moustafa, R. M. (2003). Effect of 50 Hz, 0.2 mT magnetic fields on RBC properties and heart functions of Albino rats. Bioelectromagnetics 24:535–545.
  • Griendling, K. K., Minieri, C. A., Ollerenshaw, J. D., Alexander, R. W. (1994). Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ. Res. 74:1141–1148.
  • Grissom, C. B. (1995). Magnetic field effects in biology: a survey of possible mechanisms with emphasis on radical-pair recombination. Chem. Rev.. 95:3–24.
  • Hulbert, A. L., Metcalfe, J., Hesketh, R. (1998). Biological response to electromagnetic fields. FASEB J. 12:395–420.
  • International Commission on Non Ionizing Radiation Protection (1998). Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 74:494–522.
  • Irmak, M. K., Fadillioglu, E., Gulec, M., Erdogan, H., Yagmurca, M., Akyol, O. (2002). Effects of electromagnetic radiation from a cellular telephone on the oxidant and antioxidant levels in rabbits. Cell Biochem. Funct. 20:279–283.
  • Jelenkovic, A., Janac, B., Pesic, V., Jovanovic, D. M., Vasiljevic, I., Prolic, Z. (2006). Effects of extremely low-frequency magnetic field in the brain of rats. Brain Res. Bull. 68:355–360.
  • Jolanta, J., Janina, G., Marek, Z., Elzybieta, R. (2002). Effect of 7 mT static magnetic field and iron ions on rat lymphocytes: apoptosis, necrosis and free radical processes. Bioelectrochemistry 57:107–111.
  • Kavaliers, M., Choleris, E., Prato, F. S., Ossenkopp, K. P. (1998). Evidence for the involvement of nitric oxide and nitric oxide synthase in the modulation of opioid-induced antinociception and the inhibitory effects of exposure to 60-Hz magnetic fields in the land snail. Brain Res. 809:50–57.
  • Kula, B., Sobczak, A., Kuska, R. (2002). A study of the effects of static and extremely low frequency magnetic fields on lipid peroxidation products in subcellular fibroblast fractions. Electromagn. Biol. Med. 21:161–168.
  • Lai, H., Singh, N. P. (1997a). Melatonin and N-tert-butyl-alpha-phenylnitrone block 60-Hz magneticfield-induced DNA single and double strand breaks in rat brain cells. J. Pineal Res. 22:152–162.
  • Lai, H., Singh, N. P. (1997b). Melatonin and a spin-trap compound block radiofrequency electromagnetic radiation-induced DNA strand breaks in rat brain cells. Bioelectromagnetics 18:446–454.
  • Matsuda, T., Bates, J. N., Lewis, S. J., Abboud, F. M., Chapleau, M. W. (1995). Modulation of baroreceptor activity by nitric oxide and S-nitrosocysteine. Circ. Res. 76:426–433.
  • Mnaimneh, S., Bizri, M., Veyret, B. (1996). No effect of exposure to static and sinusoidal magnetic fields on nitric oxide production by macrophages. Bioelectromagnetics 17:519–521.
  • Noda, Y., Mori, A., Liburdy, R. P., Packer, L. (2000). Pulsed magnetic fields enhance nitric oxide synthase activity in rat cerebellum. Pathophysiology 7:127–130.
  • Okano, H., Masuda, H., Ohkubo, C. (2005). Decreased plasma levels of nitric oxide metabolites, Angiotensin II, and aldosterone in spontaneously hypertensive rats exposed to 5 mT static magnetic field. Bioelectromagnetics 26:161–172.
  • Ozguner, F., Oktem, F., Ayata, A., Koyu, A., Yilmaz, H. R. (2005). A novel antioxidant agent caffeic acid phenethyl ester prevents long-term mobile phone exposure-induced renal impairment in rat. Prognostic value of malondialdehyde, N-acetyl-β-D-glucosaminidase and nitric oxide determination. Molec. Cellular Biochem. 277:73–80.
  • Prato, F. S., Kavaliers, M., Carson, J. J. (1996). Behavioural evidence that magnetic field effects in the land snail. Cepaea nemoralis, might not depend on magnetite or induced electric currents. Bioelectromagnetics 17:123–130.
  • Rajagopalan, S., Kurz, S., Munzel, T., Tarpey, M., Freeman, B. A., Griendling, K. K., Harrison, D. G. (1996). Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J. Clin. Invest. 97:1916–1923.
  • Repacholi, M. H., Greenebaum, B. (1999). Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs. Bioelectromagnetics 20:133–160.
  • Roy, S., Noda, Y., Eckert, V., Traber, M. G., Mori, A., Liburdy, R., Packer, L. (1995). The phorbol 12-myristate 13-acetate (PMA)-induced oxidative burst in rat peritoneal neutrophils is increased by a 0.1 mT (60 Hz) magnetic field. FEBS Lett. 376:164–166.
  • Salvatore, J. R. (1996). Low-frequency magnetic fields and cancer–What you should know and what to tell your patients. Postgraduate Med. 100:183–188.
  • Sert, C., Akdag, M. Z., Bashan, M., Buyukbayram, H., Dasdag, S. (2002). ELF magnetic field effects on fatty acid composition of phospholipid fraction and reproduction of rat' testes. Electromagn. Biol. Med. 21:19–29.
  • Stauss, H. M., Persson, P. B. (2000). Role of nitric oxide in buffering short-term blood pressure fluctuations. News Physiol. Sci. 15:229–233.
  • Tenforde, T. S. (1996). Interaction of ELF magnetic fields with living systems. In: Polk, C., Postow, E., eds. Biological Effects of Electromagnetic Fields. Boca Raton, FL: CRC Press, pp. 185–230.
  • Valberg, P. A., Kavet, R., Rafferty, C. N. (1997). Can low-level 50/60 Hz electric and magnetic fields cause biological effects? Radiat. Res. 148:2–21.
  • VanAmsterdam, J. G. C., VandenBerg, C., Zuidema, J., te Biesebeek, J. D., Rokos, H. (1996). Effect of septicaemia on the plasma levels of biopterin and nitric oxide metabolites in rats and rabbits. Biochem. Pharmacol. 52:1447–1451.
  • Verdon, C. P., Burton, B. A., Prior, R. L. (1995). Sample pretreatment with nitrate reductase and glucose-6-phosphate dehydrogenase quantitatively reduces nitrate while avoiding interference by NADPH+ when the Griess reaction is used to assay for nitrite. Anal. Biochem. 224:502–508.
  • Xu, B., Xiao-hong, L., Lin, G., Queen, L., Ferro, A. (2002). Amlodipine, but not verapamil or nifedipine, dilates rabbit femoral artery largely through a nitric oxide- and kinin-dependent mechanism. Br. J. Pharmacol. 136:375–382.
  • Yoshikawa, T., Tanigawa, M., Tanigawa, T., Imai, A., Hongo, H., Kondo, M. (2000). Enhancement of nitric oxide generation by low frequency electromagnetic field. Pathophysiology 7:131–135.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.