123
Views
23
CrossRef citations to date
0
Altmetric
Original

Cellular ELF Signals as a Possible Tool in Informative Medicine

, , , &
Pages 71-79 | Published online: 07 Jul 2009

References

  • Adey W. R. Tissue interaction with non-ionizing electromagnetic field. Physiol. Rev. 1981; 61: 435–514
  • Adey W. R. Biological effects of electromagnetic fields. J. Cell. Biochem. 1993; 51(4)410–416
  • Anversa P., Kajstura J. Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circ. Res. 1998; 83: 1–14
  • Armstrong M. T., Lee D. Y., Armstrong P. B. Regulation of proliferation of the fetal myocardium. Dev. Dyn. 2000; 219: 226–236
  • Barnes P. S. Effect of electromagnetic field on the rate of chemical reactions. Biophysics 1996; 41: 801–808
  • Basset C. A. L. Beneficial effects of electromagnetic fields. J. Cell. Biochem. 1993; 51: 387–393
  • Bates R. C., Edwards N. S., Yates J. D. Spheroids and cell survival. Crit. Rev. Oncol. Hematol. 2000; 36: 61–74
  • Batta K., Rugg E. L., et al. A keratin 14 ‘knockout’ mutation in recessive epidermolysis bullosa simplex resulting in less severe disease. Br. J. Dermatol. 2000; 143(3)621–627
  • Bauréus Koch C. L. M., Sommarin M., et al. Interaction between weak low frequency magnetic fields and cell membranes. Bioelectromagnetics 2003; 24: 395–402
  • Bearzi C., Cascapera S., et al. Characterization and growth of human cardiac stem cells. Late-breaking developments in stem cell biology and cardiac growth regulation. Circulation 2005; 11(13)1720
  • Beltrami A. P., Barlucchi L., et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003; 114(6)763–776
  • Beltrami A. P., Urbanek K., et al. Evidence that human cardiac myocytes divide after myocardial infarction. N. Engl. J. Med. 2001; 344: 1750–1757
  • Bertani, F. R. (2001/2002). Effetti indotti da campi elettromagneici a bassa frequenza su una linea cellulare in vitro. Tesi di laurea in Fisica, La Sapienza, Roma.
  • Blackman C. F., Benane S. G., et al. Effects of ELF (1–120 Hz) and modulated (50 Hz) RF fields on the efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics 1985; 6: 1–11
  • Blau H. M., Brazelton T. R., Weimann J. M. The evolving concept of a stem cell: Entity or function?. Cell 2001; 105(7)829–841
  • Boukamp P., Petrussevska R. T., et al. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 1988; 106: 761–771
  • Brockes J. P. Amphibian limb regeneration: rebuilding a complex structure. Science 1997; 276(5309)81–87
  • Breitkreutz D., Schoop V. M., et al. Epidermal differentiation and basement membrane formation by HaCaT cells in surface transplants. Eur. J. Cell Biol. 1998; 75: 273–286
  • Cai C. L., Liang X., et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell. 2003; 5: 877–989
  • Cai J., Weiss M. L., Rao M. S. In search of “stemness.”. Exp. Hematol. 2004; 32(7)585–598
  • Canigiani, S., Volpini, M. (2003). Infarto acuto del miocardio: Biochimica del danno cellulare e marcatori di lesione. Caleidoscopio 172, Medical Systems S.p.A. Genova.
  • Ceci M., Ross J., Jr., Condorelli G. Molecular determinants of the physiological adaptation to stress in the cardiomyocyte: A focus on AKT. J. Mol. Cell. Cardiol. 2004; 37(5)905–912
  • Chen S., Zhang Q., et al. Dedifferentiation of lineage-committed cells by a small molecule. J. Amer. Chem. Soc. 2004; 126: 410–411
  • Dawn B., Stein A. B., et al. Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc. Natl. Acad. Sci. USA 2005; 102(10)3766–3771
  • Dimmeler S., Zeiher A. M., Schneider M. D. Unchain my heart: The scientific foundations of cardiac repair. J. Clin. Invest. 2005; 115: 572–583
  • Doevendans P. A., Kubalak S. W., et al. Differentiation of cardiomyocytes in floating embryoid bodies is comparable to fetal cardiomyocytes. J. Mol. Cell. Cardiol. 2000; 32: 839–851
  • Dominey A. M., Wang X. J., et al. Targeted over expression of transforming growth factor alpha in the epidermis of transgenic mice elicits hyperplasia, hyperkeratosis, and spontaneous, squamous papillomas. Cell Growth Differ. 1993; 4: 1071–1082
  • Engel F. B., Schebesta M., et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev. 2005; 19(10)1175–1187
  • Frey A. H. Electromagnetic field interactions with biological systems. FASEB 1993; 7: 272–281
  • Fukunaga M., Oka M., et al. UV-induced tyrosine phosphorylation of PKC delta and promotion of apoptosis in the HaCaT cell line. Biochem. Biophys. Res. Commun. 2001; 30: 289(2):573–579
  • Glaser R. Current concepts of the interaction of weak electromagnetic fields with cells. Bioelectrochem. Bioenerg. 1992; 27: 255–268
  • Hierlihy A. M., Seale P., et al. The post-natal heart contains a myocardial stem cell population. FEBS Lett. 2002; 530(1–3)239–243
  • Hinsenkamp M., Jercinovic A., et al. Effects of low frequency pulsed electromagnetical current on keratinocytes in vitro. Bioelectromagnetics 1997; 18: 250–254
  • Hsu M., Andl T., et al. Cadherin repertoire determines partner-specific gap junctional communication during melanoma progression. J. Cell Sci. 2000; 113(pt 9)1535–1542
  • John C. F., Morris K., et al. Ultraviolet-B exposure leads to up-regulation of senescence-associated genes in Arabidopsis thaliana. J. Exp. Bot. 2001; 52(359)1367–1373
  • Jost M., Kari C., Rodeck U. The EGF receptor-an essential regulator of multiple epidermal functions. Eur. J. Dematol. 2000; 10: 505–510
  • Kaiser F. Theory of non-linear excitation. Biological Coherence and Response to External Stimuli, H. Frolich, et al. Heidelberg, Springer 1988; 25–48
  • Karabakhtsian R., Bronde N., et al. Calcium is necessary in the cell response to EM fields. FEBS Lett. 1994; 301: 53–59
  • Korff T., Augustin H. G. Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation. J. Cell Biol. 1998; 143: 1341–1352
  • La Thangue N. B. E2F and the molecular mechanisms of early cell-cycle control. Biochem. Soc. Trans. 1996; 24(1)54–59
  • Laemmli U. K. Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 1970; 227: 680–685
  • Laugwitz K. L., Moretti A., et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 2005; 433(7026)647–653
  • Leszczynski D., Pitsillides C. M., et al. Laser-beam-triggered microcavitation: A novel method for selective celldestruction. Radiat. Res. 2001; 156(4)399–407
  • Liboff A. R. Cyclotron resonance in membrane transport. Interaction between Electromagnetic Fields and Cells, A. Chiabrera, C. Nicolini, H. P. Schwan. Plenum Press, London 1985; 281–296
  • Liboff A. R. Electric-field ion cyclotrone resonance. Bioelectromagnetics 1997; 18: 85–87
  • Liboff A. R. Toward an electromagnetic paradigm for biology and medicine. J. Altern. Complement. Med. 2004; 10: 41–47
  • Liboff A. R., Smith S. D., McLeod B. R. Experimental evidence for ion cyclotron resonance mediation of membrane transport. Mechanistic Approaches to Interaction of Electric and Electromagnetic Fields with Living Systems, M. Blank, E. Findl. Plenum Press, New York 1987; 109–132
  • Liburdy R. P. Calcium signalling in lymphocytes and ELF fields: Evidence for an electromagnetic field metric and a site of interaction involving calcium ion channels. FEBS Lett. 1992; 301(1)53–59
  • Lisi A., Foletti A., et al. Extremely low frequency 7 Hz 100 microT electromagnetic radiation promotes differentiation in the human epithelial cell line HaCaT. Electromagn. Biol. Med. 2006; 25(4)269–280
  • Lo D. C., Allen F., Brockes J. P. Reversal of muscle differentiation during urodele limb regeneration. Proc. Natl. Acad. Sci. USA. August 1 1993; 90(15)7230–7234
  • Maden M. Regeneration: every clot has a thrombin lining. Curr. Biol. 2003; 13(13)R517–R518
  • Majno, G.,, Joris, I. Cellule, Tessuti e Malattia. Casa Editrice Ambrosiana, Milan, Italy 2000
  • Martin C. M., Meeson A. P., et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev. Biol. 2004; 265(1)262–275
  • Mathur A., Martin J. F. Stem cells and repair of the heart. Lancet 2004; 364(9429)183–192
  • Matsuura K., Nagai T., et al. Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J. Biol. Chem. 2004; 279: 11384–11391
  • McGann C. J., Odelberg S. J., Keating M. T. Mammalian myotube dedifferentiation induced by newt regeneration extract. Proc. Natl. Acad. Sci. USA 2001; 98: 13699–13704
  • Medema J. P., Sark M. W., et al. Calcium inhibits epidermal growth factor-induced activation of p21ras in human primary keratinocytes. Mol. Cell. Biol. 1994; 14(11)7078–7085
  • Medvinnsky A., Smith A. Fusion brings down barriers. Nature 2003; 422: 823–825
  • Messina E., De Angelis L., et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res. 2004; 95(9)911–921, . Epub October 7, 2004.
  • Murphy, E., Mild, K. H. (1997). EMF science review symposium: theoretical mechanisms and in vitro research findings. NIHS & EMF RAPID; see http://www.niehs.nih.gov/emfrapid/html/Symposium1/3.htm.
  • Nadal-Ginard B., Kajstura J., et al. Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ. Res. 2003; 92: 139–150
  • Odelberg S. J., Kollhoff A., Keating M. T. Dedifferentiation of mammalian myotubes induced by msx1. Cell 2000; 103: 1099–1109
  • Oh H., Bradfute S. B., et al. Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction. Proc. Natl. Acad. Sci. USA 2003; 100(21)12313–12318
  • Pazur A. Characterization of weak magnetic field effects in an acqueous glutamic acid solution by nonlinear dielectric spectroscopy and voltammetry. Biomagn. Res. Technol. 2004; 2: 8
  • Peus D., Hamacher L., Pittelkow M. R. EGF-receptor tyrosine kinase inhibition induces keratinocytes growth arrest and terminal differentiation. J. Invest. Derm. 1997; 109: 751–756
  • Phillips J. L., Haggren W., et al. Magnetic field-induced changes in specific gene transcription. Biochimica Biophysica Acta 1992; 1132: 140–144
  • Pilla A. A., Markov M. S. Bioeffects of weak electromagnetic fields. Rev. Environ. Health 1992; 10(3–4)155–169
  • Pletnev S. D. The use of millimeter band electromagnetic waves in clinical oncology. Crit. Rev. Biomed. Eng. 2000; 28(3–4)573–587
  • Preston S. L., Alison M. R., et al. The new stem cell biology: something for everyone. Mol. Pathol. 2003; 56(2)86–96
  • Quaini F., Urbanek K., et al. Chimerism of the transplanted heart. N. Engl. J. Med. 2002; 346: 5–1
  • Rusovan A., Kanje M. Magnetic fields stimulate peripheral nerve regeneration hypophyctiomia rats. Neuroreport 1992; 3(12)1039–1041
  • Santoro N., Lisi A., et al. Effect of extremely low frequency (ELF) magnetic field exposure on morphological and biophysical properties of human lymphoid cell line (Raji). Biochimica Biophyica. Acta 1997; 1357: 281–290
  • Savitz D. A., Pearce N., Poole C. Update on methodological issues in the epidemiology of electromagnetic fields and cancer. Epidemiol. Rev. 1987; 15: 558–566
  • Schwan, A., Chiabrera, C., Nicolini, C., Schwan, H. P. (eds.). (1985). Interactions Between Electromagnetic Fields and Cells. New York: Plenum Press.
  • Serway, R. A. Principi di fisica. Saunders College Publishing, Philadelphia 1998
  • Smith R. R., Abraham M. R., et al. 5001 electrophysiology of human and porcine adult cardiac stem cells isolated from endomyocardial biopsies. Late-breaking developments in stem cell biology and cardiac growth regulation. Circulation 2005; 111(13)1720
  • Smits A. M., van Vliet P., et al. The role of stem cells in cardiac regeneration. J. Cell Mol. Med. 2005; 9(1)25–36
  • Spradling A., Drummond-Barbosa D., Kai T. Stem cells find their niche. Nature 2001; 414(6859)98–104
  • Sussman M. A., Anversa P. Myocardial aging and senescence: Where have the stem cells gone?. Ann. Rev. Physiol. 2004; 66: 29–48
  • Szabo I., Rojavin M. A., et al. Reactions of keratinocytes to in vitro millimeter wave exposure. Bioelectromagnetics 2001; 22: 358–364
  • Tanaka E. M. Regeneration: If they can do it, why can't we?. Cell 2003; 113(5)559–562
  • Tanaka E. M., Drechsel D. N., Brockes J. P. Thrombin regulates S-phase re-entry by cultured newt myotubes. Curr. Biol. 1999; 9(15)792–799
  • Tenforde T. S. Interaction of extremely low frequency electromagnetic and magnetic fields with humans. Handbook of Biological Effects of Electromagnetic Fields2nd ed, C. Polk, E. Postow. CRC Press, Boca Raton, FL 1995; 185–230
  • Vasioukhin V., Bauer C., et al. Hyperproliferation and defects in epithelial polarity upon conditional ablation of alpha-catenin in skin. Cell 2001; 104(4)605–617
  • Ventura C., Maioli M., et al. Turning on stem cell cardiogenesis with extremely low frequency magnetic fields. FASEB J. 2005; 19(1)155–157
  • Vescovi A. L., Gritti A., Galli R. Le risorse delle cellule staminali somatiche. Le scienze 2001; 392: 42–47
  • Walleczeck J. Electromagnetic field effect on cells of the immune system: The role of calcium signalling. Faseb. J. 1992; 6: 3177–3185
  • Weaver J. C., Astumian R. D. The response of living cells on very weak electromagnetic fiels: The thermal noise limit. Science 1990; 247: 459–462
  • Wojakowski W., Tendera M., et al. Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 2004; 110: 3213–3220
  • Wurmser A. E., Gage F. H. Stem cells: Cell fusion causes confusion. Nature 2002; 416(6880)485–487
  • Zhadin M. N. Review of russian literature on biological action of DC and low-frequency AC magnetic fields. Bioelectromagnetics 2001; 22(1)27–45

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.