490
Views
34
CrossRef citations to date
0
Altmetric
Articles

Effects of extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs) on glioblastoma cells (U87)

, , , , , & show all
Pages 238-247 | Received 29 Apr 2016, Accepted 11 Sep 2016, Published online: 22 Nov 2016

References

  • Aylon, Y., Oren, M. (2007). Living with p53, dying of p53. Cell. 130:597–600.
  • Ayşe, I. G., Zafer, A., Sule, O., et al. (2010). Differentiation of K562 cells under ELF-EMF applied at different time courses. Electromagn. Biol. Med. 29:122–130.
  • Baharara, J., Hosseini, N., Farzin, T. R. (2015) Extremely low frequency electromagnetic field sensitizes cisplatin-resistant human ovarian adenocarcinoma cells via P53 activation. Cytotechnology. 68:1403–1413.
  • Barbault, A., Costa, F. P., Bottger, B., et al. (2009). Amplitude-modulated electromagnetic fields for the treatment of cancer: Discovery of tumor-specific frequencies and assessment of a novel therapeutic approach. J. Exp. Clin. Cancer Res. 28:51.
  • Ben Yakir-Blumkin, M., Loboda, Y., Schächter, L., et al. (2014). Neuroprotective effect of weak static magnetic fields in primary neuronal cultures. Neuroscience. 278:313–326.
  • Cameron, I. L., Sun, L., Short, N., et al. (2005). Daily Pulsed Electromagnetic Field (PEMF) therapy inhibits tumor angiogenesis via the hypoxia driven pathway: Therapeutic implications. Cancer Res. 65:287–287.
  • Chen, Y., Chen, C., Tu, W., et al. (2010). Design and fabrication of a microplatform for the proximity effect study of localized ELF-EMF on the growth of in vitro HeLa and PC-12 cells. J. Micromech. Microengn. 20:125023.
  • Cregan, S. P., MacLaurin, J. G., Craig, C. G., et al. (1999). Bax-dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons. J. Neurosci. 19:7860–7869.
  • D’Angelo, C., Costantini, E., Kamal, M. A., et al. (2015). Experimental model for ELF-EMF exposure: Concern for human health. Saudi J. Biol. Sci. 22:75–84.
  • Demirci, U., Buyukberber, S., Coskun, U., et al. (2012). Long term experience in high grade glial tumors with temozolomide. J. BUON. 17:357–362.
  • Dini, L., Abbro, L. (2005). Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron. 36:195–217.
  • Dini, L., Vergallo, C. (2009). Environmental factors affecting phagocytosis of dying cells: smoking and static magnetic fields. In Krysko, D. V., Vandenabeele, P., eds. Phagocytosis of Dying Cells: From Molecular Mechanisms to Human Diseases (pp. 409–438). Berlin: Springer Science+Business Media B.V.
  • Figarola, J.L., Weng, Y., Lincoln, C., et al. (2012). Novel dichlorophenyl urea compounds inhibit proliferation of human leukemia HL-60 cells by inducing cell cycle arrest, differentiation and apoptosis. Invest. New Drugs. 30:1413–14125.
  • Filipovic, N., Djukic, T., Radovic, M., et al. (2014). Electromagnetic field investigation on different cancer cell lines. Cancer Cell Int. 14:84.
  • Filipovic, N. D., Peulic, A. S., Zdravkovic, N. D., et al. (2011). Transient finite element modeling of functional electrical stimulation. Gen Physiol. Biophys. 30:59–65.
  • Gashegu, J., Vanmuylder, N., Kassengera, Z., et al. (2005). Expression of caspase 3 and p53 during physiological apoptosis and apoptosis induced by three teratologic agents during early craniofacial development of the mouse embryo. Morphologie. 89:82–89.
  • Grassi, C., D’Ascenzo, M., Torsello, A., et al. (2004). Effects of 50 Hz electromagnetic fields on voltage-gated Ca2+ channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium. 35:307–315.
  • Hadjiloucas, I., Gilmore, A. P., Bundred, N. J., et al. (2001). Assessment of apoptosis in human breast tissue using an antibody against the active form of caspase 3: Relation to tumour histopathological characteristics. Br. J. Cancer. 85:1522–1526.
  • Hasanzadeh, H., Rezaie-Tavirani, M., Seyyedi, S.S., et al. (2014). Effect of ELF-EMF Exposure on Human Neuroblastoma Cell Line: a Proteomics Analysis. Iran. J. Cancer Prev. 7:22–27.
  • Hirata, M., Kusuzaki, K., Takeshita, H., et al. (2001). Drug resistance modification using pulsing electromagnetic field stimulation for multidrug resistant mouse osteosarcoma cell line. Anticancer Res. 21:317–320.
  • Hofseth, L. J., Hussain, S. P., Harris, C. C. (2004). p53: 25 years after its discovery. Trends Pharmacol. Sci. 25:177–181.
  • Hui, L., Bakiri, L., Stepniak, E., et al. (2007). p38alpha: a suppressor of cell proliferation and tumorigenesis. Cell Cycle. 6:2429–2433.
  • Imoto, M., Tanabe, K., Simizu, S., et al. (1998). Inhibition of cyclin D1 expression and induction of apoptosis by inostamycin in small cell lung carcinoma cells. Jpn. J. Cancer Res. 89:315–322.
  • Janigro, D., Perju, C., Fazio, V., et al. (2006). Alternating current electrical stimulation enhanced chemotherapy: a novel strategy to bypass multidrug resistance in tumor cells. BMC Cancer. 6:72.
  • Kiray, A., Tayefi, H., Kiray, M., et al. (2013). The effects of exposure to electromagnetic field on rat myocardium. Toxicol. Ind. Health. 29:418–425.
  • Kirkin, V., Joos, S., Zörnig, M. (2004). The role of Bcl-2 family members in tumorigenesis. Biochim. Biophys. Acta. 1644:229–249.
  • Kountouras, J., Zavos, C., Chatzopoulos, D. (2004). Induction of apoptosis as a proposed pathophysiological link between glaucoma and Helicobacter pylori infection. Med. Hypotheses. 62:378–381.
  • Kovacic, P., Somanathan, R. (2010). Electromagnetic fields: Mechanism, cell signaling, other bioprocesses, toxicity, radicals, antioxidants and beneficial effects. J. Recept. Signal Transduct. Res. 30:214–226.
  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680–685.
  • Lupke, M., Rollwitz, J., Simkò, M. (2004). Cell activating capacity of 50 Hz magnetic fields to release reactive oxygen intermediates in human umbilical cord blood-derived monocytes and in Mono Mac 6 cells. Free Radic. Res. 38:985–993.
  • Markov, M. S. (2000). Dosimetry of magnetic fields in the radiofrequency range. In Klauenberg, B. J. and Miklavčič, D., eds. Radio Frequency Radiation Dosimetry and its Relationship to the Biological Effects of Electromagnetic Fields (pp. 239–245). New York: Kluwer Academic Press.
  • Markov, M. S. (2007). Pulsed electromagnetic field therapy history, state of the art and future. Environmentalist. 27:465–475.
  • Markov, M. S. (2015). Electromagnetic Fields in Biology and Medicine. Boca Raton: CRC Press, Taylor & Francis Group.
  • McLendon, R. E., Halperin, E. C. (2003). Is the long-term survival of patients with intracranial glioblastoma multiforme overstated? Cancer. 98:1745–1748.
  • Miyashita, T., Krajewski, S., Krajewska, M., et al. (1994). Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene. 9: 1799–1805.
  • Morabito, C., Guarnieri, S., Fanò, G., et al. (2010). Effects of acute and chronic low frequency electromagnetic field exposure on PC12 cells during neuronal differentiation. Cell Physiol. Biochem. 26:947–958.
  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65:55–63.
  • Omuro, A., De Angelis, L. M. (2013). Glioblastoma and other malignant gliomas: a clinical review. JAMA. 310:1842–1850.
  • Pirozzoli, M.C., Marino, C., Lovisolo, G.A., et al. (2003). Effects of 50 Hz electromagnetic field exposure on apoptosis and differentiation in a neuroblastoma cell line. Bioelectromagnetics. 24:510–516.
  • Reihani Kermani, H., Pourghazi, M., Mahani, S.E. (2014). Effects of pulsed electromagnetic field on intervertebral disc cell apoptosis in rats. Electromagn. Biol. Med. 33:246–249.
  • Rocha, S., Martin, A. M., Meek, D. W., et al. (2003). p53 represses cyclin D1 transcription through down regulation of Bcl-3 and inducing increased association of the p52 NF-kappaB subunit with histone deacetylase 1. Mol. Cell Biol. 23:4713–4727.
  • Rollwitz, J., Lupke, M., Simkò, M. (2004). Fifty-hertz magnetic fields induce free radical formation in mouse bone marrow-derived promonocytes and macrophages. Biochim. Biophys. Acta. 1674:231–238.
  • Ronchetto, F., Barone, D., Cintorino, M., et al. (2004). Extremely low frequency-modulated static magnetic fields to treat cancer: A pilot study on patients with advanced neoplasm to assess safety and acute toxicity. Bioelectromagnetics. 25:563–571.
  • Rosen, A. D. (2003) Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem. Biophys. 39:163–173.
  • Ruiz Gómez, M. J., Pastor Vega, J. M., de la Peña, L., et al. (1999). Growth modification of human colon adenocarcinoma cells exposed to a low-frequency electromagnetic field. J. Physiol. Biochem. 55:79–83.
  • Santini, M. T., Rainaldi, G., Indovina, P. L. (2009). Cellular effects of extremely low frequency (ELF) electromagnetic fields. Int. J. Radiat. Biol. 85:294–313.
  • Santoro, N., Lisi, A., Pozzi, D., et al. (1997). Effect of extremely low frequency (ELF) magnetic field exposure on morphological and biophysical properties of human lymphoid cell line (Raji). Biochim. Biophys. Acta. 1357:281–290.
  • Shimizu, S., Narita, M., Tsujimoto, Y. (1999). Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature. 399:483–487.
  • Shupak, N. M., Prato, F. S., Thomas, A. W. (2003). Therapeutic uses of pulsed magnetic-field exposure: A review. Radio Sci. Bull. 307:9–32.
  • Simkò, M., Droste, S., Kriehuber, R., et al. (2001). Stimulation of phagocytosis and free radical production in murine macrophages by 50 Hz electromagnetic fields. Eur. J. Cell Biol. 80:562–566.
  • Sisken, B. F., Walker, J. (1995). Therapeutic aspects of electromagnetic fields for soft-tissue healing. In: Blank, M., ed. Electromagnetic Fields: Biological Interactions and Mechanisms (pp. 277–286). Washington: ACS Advances in Chemistry Series 250.
  • Sladowski, D., Steer, S. J., Clothier, R. H., et al. (1993). An improved MTT assay. J. Immunol. Methods. 157:203–207.
  • Strachan, T., Read, A. P. (1999). Ch. 18: Cancer genetics. In: Human Molecular Genetics 2 (2nd ed.). New York, NY: John Wiley and Sons Inc.
  • Thornton, T. M., Rincon, M. (2009). Non-classical p38 map kinase functions: cell cycle checkpoints and survival. Int. J. Biol. Sci. 5:44–51.
  • Tofani, S., Barone, D., Cintorino, M., et al. (2001). Static and ELF magnetic fields induce tumor growth inhibition and apoptosis. Bioelectromagnetics. 22:419–428.
  • Towbin, H., Staehelin, T., Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA. 76:4350–4354.
  • Vergallo, C., Ahmadi, M., Mobasheri, H., et al. (2014). Impact of inhomogeneous static magnetic field (31.7-232.0 mT) exposure on human neuroblastoma SH-SY5Y cells during cisplatin administration. PLoS One. 9:e113530.
  • Vianale, G., Reale, M., Amerio, P., et al. (2008). Extremely low frequency electromagnetic field enhances human keratinocyte cell growth and decreases proinflammatory chemokine production. Br. J. Dermatol. 158:1189–1196.
  • Wei, M., Guizzetti, M., Yost, M., et al. (2000). Exposure to 60-Hz magnetic fields and proliferation of human astrocytoma cells in vitro. Toxicol. Appl. Pharmacol. 162:166–176.
  • Yuen, J. W., Chung, G. T., Lun, S. W., et al. (2014). Epigenetic inactivation of inositol polyphosphate 4-phosphatase B (INPP4B), a regulator of PI3K/AKT signaling pathway in EBV-associated nasopharyngeal carcinoma. PLoS One. 9:e105163.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.