160
Views
4
CrossRef citations to date
0
Altmetric
Articles

Helical water wires

, &
Pages 265-269 | Received 03 Jan 2017, Accepted 20 Apr 2017, Published online: 19 May 2017

References

  • Adair, R. K. (1991). Constraints on biological effects of weak extremely-low-frequency electromagnetic fields. Phys. Rev. A. 43:1039–1048.
  • Agmon, N. (1995). The Grotthuss mechanism. Chem. Phys. Lett. 244:456–462.
  • Bai, J., Wang, J., Zeng, X. C. (2006). Multiwalled ice helices and ice nanotubes. Proc. Natl. Acad. Sci. USA. 103:19664–19667.
  • Blackman, C. F., Benane, S. G., Rabinowitz, J. R., House, D. E., Joines, W. T. (1985). A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics 6:327–337.
  • Bogatina, N. I., Sheykina, N. V. (2014). Role of hydronium ions in biological effects of weak combined magnetic fields. Phys. Alive 21:43–45.
  • Del Giudice, E., Fleischmann, M., Preparata, G., Talpo, G. (2002). On the “unreasonable” effects of ELF magnetic fields upon a system of ions. Bioelectromagnetics 23:522–530.
  • D’Emilia, E., Giuliani, L., Lisi, A., Ledda, M., Grimaldi, S., Montagnier, L., Liboff, A. R. (2015). Lorentz force in water: Evidence that hydronium cyclotron resonance enhances polymorphism. Electromag. Biol. Med. 34:370–375.
  • D’Emilia, E., Ledda, M., Foletti, A., Lisi, A., Giuliani, L., Grimaldi, S., Liboff, A. R. (2016). Weak-field H3O+ ion cyclotron resonance alters water refractive index. Electromag. Biol. Med. DOI: 10.1080/15368378.2016.1181082.
  • Eigen, M., deMaeyer, L. (1958). Self dissociation and proton transport in water and ice. Proc. Roy. Soc. A. 247:505–533.
  • Fesenko, E.E., Gluvstein, A.Y. (1995). Changes in the state of water, induced by radiofrequency electromagnetic fields. FEBS Lett. 367:53–55.
  • Fitzsimmons, R. J., Ryaby, J. T., Mohan, S., Magee, F. P., Baylink, D. G. (1995). Combined magnetic fields increase insulin-like growth factor in TE-85 human osteosarcoma bone cell cultures. Endocrinology 136:3100–3106.
  • Foletti, A., Grimaldi, S., Lisi, A., Ledda, M., Liboff, A. R. (2013). Electromagnetic medicine: The role of resonance signaling. Electromag. Biol. Med. 32:484–499.
  • Gaetani, R., Ledda, M., Barile, L., Cimenti, I., De Carlo, F., Forte, E., Ionta, V., Giuliani, L., D’Emilia, E., Frati, G., Mirali, F., Pozzi, D., Messina, E., Grimaldi, S., Giacomello, A., Lisi, A. (2009). Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic field. Cardiovasc. Res. 82:411–420.
  • Galland, P., Pazur, A. (2005). Magnetoreception in plants. J. Plant. Res. 118:371–389.
  • Griffiths, D. J. (2007). 3rd ed, Chap. 11. Upper Saddle River, NJ: Pearson.
  • Halle, B. (1988). On the cyclotron resonance mechanism for magnetic field effects on transmembrane ions. Bioelectromagnetics 9:381–385.
  • Jenrow, K. A., Smith, C. H., Liboff, A. R. (1995). Weak extremely low-frequency magnetic fields and regeneration in the planarian Dugesia tigrina. Bioelectromagnetics 16:106–112.
  • Liboff, A. R. (1985). Geomagnetic cyclotron resonance in living cells. J. Biol. Phys. 13:99–102.
  • Liboff, A. R. (2006). The ion cyclotron resonance hypothesis. In: Greenebaum, B., Barnes, F. S. Bioengineering and Biophysical Aspects of Electromagnetic Fields (Handbook of Biological Effects of Electromagnetic Fields). 3rd Ed Chap 9. Boca Raton: CRC Press.
  • Liboff, A. R., Poggi, C., Pratesi. (2017). Weak Low-frequency oscillations in water. Electromag. Biol. Med. https://doi.org/10.1080/15368378.2016.1227332.
  • Lisi, A., Ledda, M., de Carlo, F., Pozzi, D., Messina, E., Gaetani, R., Chimenti, I., Barile, L., Giacomello, A., D’Emilia, E., Giuliani, L., Foletti, A., Patti, A., Vulcano, A., Grimaldi, S. (2008). Ion cyclotron resonance as a tool in regenerative medicine. Electromag. Biol. Med. 27:127–133.
  • Lovely, R. H., Creim, J. A., Miller, D. L., Anderson, L.E. (1993). Behavior of Rats in a Radial Arm Maze during Exposure to Magnetic Fields: Evidence for Effects of Magnesium Ion Resonance. Abstract. 15th Annual Meeting. Los Angeles: Bioelectromagnetics Soc.
  • McKinley, J. M., Schmidt, P. B. (1982). Analyses of mechanical stability for systems of ions and atoms associated with rings, cages, and crypts. J. Chem. Soc. Faraday Trans. 2; 78:867–879.
  • Novikov, V. V., Fesenko, E. E. (2001). Hydrolysis of some peptides and proteins in a weak combined (constant and low-frequency variable) magnetic field. Biophysics 46:233–238.
  • Pollack, G. H. (2013). The Fourth Phase of Water. P.82. Seattle: Ebner.
  • Rozek, R. J., Sherman, M. L., Liboff, A. R., McLeod, B. R., Smith, S. D. (1987). Nifedipine is an antagonist to cyclotron resonance enhancement of 45Ca incorporation in human lymphocytes. Cell Calcium. 8:413–427.
  • Sadoc, J. F., Rivier, N. (1999). Boerdijk-Coxeter helix and biological helices. Eur. Phys. J. B. – Condens. Matter. Complex Syst. 12:309–318.
  • Sheperd, N. E., Hoang, H. N., Abbenante, G., Fairlie, D. P. (2005). Single turn peptide alpha helices with exceptional stability in water. J. Am. Chem. Soc. 127:2974–2983.
  • Shimkevich, A., Shimkevich, A. (2011). On water density fluctuations with helices of hydrogen bonds. Adv. Condens. Matter Phys. doi.org/10.1155/2011/871231.
  • Smith, S. D., McLeod, B. R., Liboff, A. R., Cooksey, K. (1987). Calcium cyclotron resonance and diatom mobility. Bioelectromagnetics 8:215–227.
  • Thomas, J. R., Schrot, J., Liboff, A. R. (1986). Low-intensity magnetic fields alter operant behavior in rats. Bioelectromagnetics 7:349–357.
  • Zhadin, M. N., Novikov, V. V., Barnes, F. S., Pergola, N. F. (1998). Combined action of static and alternating magnetic fields on ionic current in aqueous glutamic acid solutions. Bioelectromagnetics 19:41–45.
  • Zhadin, M. N., Deryugina, O. N., Pisachenko, T. M. (1999). Influence of combined DC and AC magnetic fields on rat behavior. Bioelectromagnetics 20:378–386.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.