294
Views
11
CrossRef citations to date
0
Altmetric
Articles

Effects of low-level combined static and weak low-frequency alternating magnetic fields on cytokine production and tumor development in mice

, , , , , , , & show all
Pages 74-83 | Received 25 Jun 2018, Accepted 04 Nov 2018, Published online: 26 Nov 2018

References

  • Alberto, D., Busso, L., Crotti, G., et al. (2008). Effects of static and low-frequency alternating magnetic fields on the ionic electrolytic current of glutamic acid aqueous solutions. Electromagn. Biol. Med. 27:25–39. doi 10.1080/15368370701878788.
  • Amedei, A., Prisco, D., D’ Elios, M. M. (2013). The use of cytokines and chemokines in the cancer immunotherapy. Recent Pat Anticancer Drug Discov. 8:126–142.
  • Barbault, A., Costa, F. P., Bottger, B., et al. (2009). Amplitude-modulated electromagnetic fields for the treatment of cancer: Discovery of tumor-specific frequencies and assessment of a novel therapeutic approach. J. Exp. Clin. Cancer Res. 28:51. doi 10.1186/1756-9966-28-51.
  • Bobkova, N. V., Novikov, V. V., Medvinskaya, N. I., et al. (2018). Effect of weak combined static and extremely low-frequency alternating magnetic fields on spatial memory and brain amyloid-β in two animal models of Alzheimer’s disease. Electromagn. Biol. Med. [ Epub ahead of print] doi.org/ 10.1080/15368378.2018.1471700.
  • Brown, T. J., Lioubin, M. N., Marquardt, H. (1987). Purification and characterization of cytostatic lymphokines produced by activated human T lymphocytes. Synergistic antiproliferative activity of transforming growth factor beta 1, interferon-gamma, and oncostatin M for human melanoma cells. J. Immunol. 139:2977–2983.
  • Calabrò, E., Magazù, S. (2018). Resonant interaction between electromagnetic fields and proteins: A possible starting point for the treatment of cancer. Electromagn Biol Med. 37:155–168. doi 10.1080/15368378.2018.1499031.
  • Carpagnano, G. E., Spanevello, A., Curci, C., et al. (2007). IL-2, TNF-alpha, and leptin: Local versus systemic concentrations in NSCLC patients. Oncol. Res. 16:375–381.
  • Comisso, N., Del Giudice, E., De Ninno, A., et al. (2006). Dynamics of the ion cyclotron resonance effect on amino acids adsorbed at the interfaces. Bioelectromagnetics. 27:16–25. doi 10.1002/bem.20171.
  • Costa, F. P., de Oliveira, A. C., Meirelles, R., et al. (2011). Treatment of advanced hepatocellular carcinoma with very low levels of amplitude-modulatedelectromagnetic fields. Br. J. Cancer. 105:640–648. doi 10.1038/bjc.2011.292.
  • D’Emilia, E., Ledda, M., Foletti, A., et al. (2017). Weak-field H3O+ ion cyclotron resonance alters water refractive index. Electromagn Biol Med. 36:55–62. doi 10.1080/15368378.2016.1181082.
  • Decker, T., Stockinger, S., Karaghiosoff, M., et al. (2002). IFNs and STATs in innate immunity to microorganisms. J. Clin. Invest. 109:1271–1277. doi 10.1172/JCI15770.
  • Del Giudice, E., Fleischmann, M., Preparata, G., et al. (2002). On the “unreasonable” effects of ELF magnetic field upon a system of ions. Bioelectromagnetics. 23:522–530. doi 10.1002/bem.10046.
  • Eder, M., Geissler, G., Ganser, A. (1997). IL-3 in the clinic. Stem Cells. 15:327–333. doi 10.1002/stem.150327.
  • Foletti, A., Grimaldi, S., Lisi, A., et al. (2013). Bioelectromagnetic medicine: The role of resonance signaling. Electromagn Biol Med. 32:484–499. doi 10.3109/15368378.2012.743908.
  • Giuliani, L., Grimaldi, S., Lisi, A., et al. (2008). Action of combined magnetic fields on aqueous solution of glutamic acid: The further development of investigations. Biomagn Res Technol. 6:1. doi 10.1186/1477-044X-6-1.
  • Hashimoto, S., Shirato, H., Hosokawa, M., et al. (1999). The suppression of metastase and change in host immune response after low-dose total-body irradiation in tumor-bearing rats. Radiat. Res. 151:717–724.
  • Ikeda, H., Old, L. J., Schreiber, R. D. (2002). The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev. 13:95–109.
  • Joseph, W. R., Cao, Z., Mountjoy, K. G., et al. (1999). Stimulations of tumors to synthesize tumor necrosis factor-alpha in situ using 5,6 dimethylxanthenone-4-accetic acid: A novel approach to cancer therapy. Cancer Res. 59:633–638.
  • Kirson, E. D., Gurvich, Z., Schneiderman, R., et al. (2004). Disruption of cancer cell replication by alternating electric fields. Cancer Res. 64:3288–3295.
  • Laramee, C. B., Frisch, P., McLeod, K., Li, G. C. (2014). Elevation of heat shock gene expression from static magnetic field exposure in vitro. Bioelectromagnetics. 35:406–413. doi 10.1002/bem.21857.
  • Liboff, A. R. (1985). Cyclotron resonance in membrane transport. In: Chiabrera, A., Nicolini, C., and Schwan, H. P. Interaction between Electromagnetic Fields and Cells. London: Plenum Press. pp. 281–296.
  • Liboff, A. R. (2010). A role for the geomagnetic field in cell regulation. Electromagn Biol Med. 29:105–112. doi 10.3109/15368378.2010.493129.
  • Liboff, A. R. (2016). Magnetic correlates in electromagnetic consciousness. Electromagn Biol Med. 35:228–236. doi 10.3109/15368378.2015.1057641.
  • Liboff, A. R., Poggi, C., Pratesi, P. (2017). Helical water wires. Electromagn Biol Med. 36:265–269. doi 10.1080/15368378.2017.1322521.
  • Mancusi, A., Piccinelli, S., Velardi, A., Pierini, A. (2018). The effect of TNF-α on regulatory T cell function in graft-versus-host disease. Front Immunol. 9:356. doi 10.3389/fimmu.2018.00356.
  • Martino, C. F., Portelli, L., McCabe, K., et al. (2010). Reduction of the Earth’s magnetic field inhibits growth rates of model cancer cell lines. Bioelectromagnetics. 31:649–655. doi 10.1002/bem.20606.
  • Miller, C. H., Maher, S. G., Young, H. A. (2009). Clinical use of interferon-gamma. Ann. N. Y. Acad. Sci. 1182:69–79. doi 10.1111/j.1749-6632.2009.05069.x.
  • Nakase, K., Kita, K., Katayama, N. (2018). IL-2/IL-3 interplay mediates growth of CD25 positive acute myeloid leukemia cells. Med. Hypotheses. 115:5–7. doi 10.1016/j.mehy.2018.03.007.
  • Novikov, V. V. (1996). Cooperative effect of the resonance amplification of ionic current in aqueous solution of amino acids under the action of weak electromagnetic fields. Approaches to experimental and theoretical analysis. Biofizika. 41:973–978.
  • Novikov, V. V., Karnaukhov, A. V. (1997). Mechanism of action of weak electromagnetic field on ionic currents in aqueous solutions of amino acids. Bioelectromagnetics. 18:25–27.
  • Novikov, V. V., Novikov, G. V., Fesenko, E. E. (2009). Effect of weak combined static and extremely low-frequency alternating magnetic fields on tumor growth in mice inoculated with the Ehrlich ascites carcinoma. Bioelectromagnetics. 30:343–351. doi 10.1002/bem.20487.
  • Novikov, V. V., Zhadin, M. N. (1994). Combined action of weak constant and variable low-frequency magnetic fields on ionic currents in aqueous solutions of amino acid. Biophys. (Moscow). 39:41–45.
  • Novoselova, E. G., Ogaĭ, V. B., Sorokina, O. V., et al. (2001). Effect of centimeter microwaves and the combined magnetic field on the tumor necrosis factor production in cells of mice with experimental tumors. Biofizika. 46:131–135.
  • Novoselova, E. G., Ogay, V. B., Sorokina, O. V., et al. (2004). The production of tumor necrosis factor in cells of tumor-bearing mice after total-body microwave irradiation and antioxidant diet. Electromagn. Biol. Med. 23:167–180. doi 10.1081/LEBM-200042320.
  • Orel, V. E., Kudryavets, Y. I., Satz, S., et al. (2004). Effects of mechanochemically activated doxorubicin and 40 MHz frequency irradiation on human A-549 lung carcinoma cells. Exp. Oncol. 26:271–277.
  • Pang, Y. Y., Andrew, Y. W. (2006). Hemoglobinuria during laparoscopic radiofrequency ablation of hepatocellular carcinoma. J. Gastroenterol. Hepatol. 21:1355. doi 10.1111/j.1440-1746.2006.04125.x.
  • Pazur, A. (2004). Characterisation of weak magnetic field effects in an aqueous glutamic acid solution by nonlinear dielectric spectroscopy and voltammetry. Biomagnetic. Res. Technol. 2:8. doi 10.1186/1477-044X-2-8.
  • Ronchetto, F., Barone, D., Cintorino, M., et al. (2004). Extremely low frequency-modulated static magnetic fields to treat cancer: A pilot study on patients with advanced neoplasm to assess safety and acute toxicity. Bioelectromagnetics. 25:563–571. doi 10.1002/bem.20029.
  • Rosado, M. M., Simko, M., Mattsson, M.-O., Pioli, S. (2018). Immune-modulating perspective for low-frequency electromagnetic fields in innate immunity. Front. Public Health. 6:85. doi 10.3389/pubh.2018.085.
  • Rosenberg, S. A. (2014). IL-2: The first effective immunotherapy for human cancer. J. Immunol. 192:5451–5458. doi 10.4049/jimmunol.1490019.
  • Roshani, R., McCarthy, F., Hagemann, T. (2014). Inflammatory cytokines in human pancreatic cancer. Cancer Lett. 10(345):157–163. doi 10.1016/j.canlet.2013.07.014.
  • Saint-Jean, M, Knol, AC, Volteau, C, Quéreux, G, et al. (2018). Adoptive cell therapy with tumor-infiltrating lymphocytes in advanced melanoma patients. J Immunol Res. 19:3530148. doi:10.1155/2018/3530148.
  • Waldmann, T. A. (2006). The biology of interleukin-2 and interleukin-15: Implications for cancer therapy and vaccine design. Nat. Rev. Immunol. 6:595–601. doi 10.1038/nri1901.
  • Wysocki, L. J., Sato, V. L. (1978). “Panning” for lymphocytes: A method for cell selection. Proc. Natl. Acad. Sci. USA. 75:2844–2848. doi 10.1073/pnas.75.6.2844.
  • Yamaguchi, S., Ogiue-Ikeda, M., Sekino, M., Ueno, S. (2006). Effects of pulsed magnetic stimulation on tumor development and immune functions in mice. Bioelectromagnetics. 27:64–72. doi 10.1002/bem.20177.
  • Yuan, L. Q., Wang, C., Zhu, K., et al. (2018). The antitumor effect of static and extremely low frequency magnetic fields against nephroblastoma and neuroblastoma. Bioelectromagnetics. 39:375–385. doi 10.1002/bem.22124.
  • Zhadin, M. N., Novikov, V. V., Barnes, F. S., et al. (1998). Combined action of static and alternating magnetic fields on ionic current in aqueous glutamic acid solution. Bioelectromagnetics. 19:41–45.
  • Zier, К., Gansbacher, B., Salvadori, S. (1996). Preventing abnormalities in signal transduction of Т cells in cancer: The promise of cytokine gene therapy. Immunol. Today. 17:39–45.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.