1,105
Views
58
CrossRef citations to date
0
Altmetric
Articles

Effect of 900-, 1800-, and 2100-MHz radiofrequency radiation on DNA and oxidative stress in brain

, , , , , ORCID Icon & show all
Pages 32-47 | Received 16 Aug 2018, Accepted 02 Dec 2018, Published online: 22 Jan 2019

References

  • Akdag, M., Dasdag, S., Canturk, F., Akdag, M. Z. (2018). Exposure to non-ionizing electromagnetic fields emitted from mobile phones induced DNA damage in human ear canal hair follicle cells. Electromagnet. Biol. Med. 37:66–75. doi 10.1080/15368378.2018.1463246.
  • Akdag, M. Z., Dasdag, S., Canturk, F., et al. (2016). Does prolonged radiofrequency radiation emitted from Wi-Fi devices induce DNA damage in various tissues of rats? J. Chem. Neuroanat. 75:116–122. doi 10.1016/j.jchemneu.2016.01.003.
  • Atmaca, E., Aksoy, A. (2009). Oxidative DNA damage and its chromatographic determination. Yüzüncü. Yil. Univ.Vet. Faculty. J. 20:79–83.
  • Ayrapetyan, G., Papanyan, A., Hayrapetyan, H., Ayrapetyan, S. (2005). Metabolic pathway of magnetized fluid-induced relaxation effects on heart muscle. Bioelectromagnetics. 26:624–630. doi 10.1002/(ISSN)1521-186X.
  • Ayrapetyan, S., Avanesian, A., Avetisian, T., Majinian, S. (1994a). Physiological effects of magnetic fields may be mediated through actions on the state of calcium ions in solution. In: Carpenter, D., Ayrapetyan, S. (eds.), Biological Effects of Electric and Magnetic Fields. Vol. 1. New York: Academic Press. pp. 181–192.
  • Ayrapetyan, S. (2017). The intracellular signaling system controlling cell hydration as a biomarker for EMF dosimetry. In: Markov, M. (ed..), Dosimetry in Bioelectromagnetics. USA: CRC Press. pp. 339–366.
  • Ayrapetyan, S., De, J. (2014). Cell hydration as a biomarker for estimation of biological effects of nonionizing radiation on cells and organisms. Sci. World J. 2014: Article ID 890518. 8. doi 10.1155/2014/890518.
  • Ayrapetyan, S. N. (2015). The role of cell hydration in realization of biological effects of nonionizing radiation (NIR). Electromagnet. Biol. Med. 34:197–210. doi 10.3109/15368378.2015.1076443.
  • Ayrapetyan, S. N., Grigorian, K. V., Avanesian, A. S., Stamboltsian, K. V. (1994b). Magnetic fields alter electrical properties of solutions and their physiological effects. Bioelectromagnetics. 15:133–142. doi 10.1002/(ISSN)1521-186X.
  • Ayrapetyan, S.N., Baghdasaryan, N., Mikayelyan, Y., et al. (2015). Cell hydration as a marker for nonionizing radiation. In: Markov, M. (ed.), Electromagnetic Fields in Biology and Medicine. Boca Raton, FL: CRC Press. pp. 193–215.
  • Baghdasaryan, N., Mikayelyan, Y., Barseghyan, S., Dadasyan, E., et al. (2012). The modulating impact of illumination and background radiation on 8Hz-induced infrasound effect on physicochemical properties of physiological solution. Electromagnet. Biol. Med. 31:310–319. doi 10.3109/15368378.2011.638029.
  • Belyaev, A. (2012). Evidence for disruption by modulation role of physical and biological variables in bioeffects of non-thermal microwaves for reproducibility, cancer risk and safety standards. In: Sage, C., Carpenter, D. (eds.), Bioinitiative Working Group, Section 15. Bioinitiative Report WHO 2012. WHO Press: Switzerland. pp. 1–71.
  • Belyaev, I., Koch, C. B., Terenius O., et al. (2006). Exposure of rat brain to 915 MHz GSM microwaves induces changes in gene expression but not double stranded DNA breaks or effects on chromatin conformation. Bioelectromagnetics. 27:295–306. doi 10.1002/bem.20216.
  • Binhi, V. N. (2012). Two types of magnetic biological effects. Biophysics. 57:237–243. doi 10.1134/S0006350912020066.
  • Binhi, V. N., Rubin, A. B. (2007). The kT paradox and possible solutions. Electromagnet. Biol. Med. 26:45–62. doi 10.1080/15368370701205677.
  • Blank, M., Goodman, R. M. (2012). Electromagnetic fields and health: DNA-based dosimetry. Electromagnet. Biol. Med. 31:243–249. doi 10.3109/15368378.2011.624662.
  • Bradford, M. M. (1976). A rapid sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Anal. Biochem. 72:248–254.
  • Brune, B., Messmer, U. K., Sandau, K. (1995). The role of nitric oxide in cell injury. Toxicol. Lett. 82–83:233–237. doi 10.1016/0378-4274(95)03481-1.
  • Burlaka, A., Tsybulin, O., Sidorik, E., et al.. (2013). Overproduction of free radical species in embryonal cells exposed to low intensity radiofrequency radiation. Exp. Oncol. 35:219–225.
  • Cam, S. T., Seyhan, N. (2012). Single-strand DNA breaks in human hair root cells exposed to mobile phone radiation. Int. J. Radiat. Biol. 88:420–424. doi 10.3109/09553002.2012.666005.
  • Celik, M. (2011). Assessment of total oxidant and antioxidant capacity and DNA damage in children with protein energy malnutrition. Expertise thesis. Harran university medical faculty department of pediatrics, Şanlıurfa, Turkey.
  • Cerda, H. (1998). Detection of irradiated fresh chicken: Pork and fish using the DNA comet assay. Lebensm. Wiss. Technol. 31:89–92. doi 10.1006/fstl.1997.0304.
  • Challis, L. J. (2005). Mechanism for Interaction between RF fields and biological tissue. Bioelectromagnetics Suppl. 7:98–106. doi 10.1002/bem.20119.
  • Chaplin, M. F. (2006). Information exchange within intracellular water. In: Pollack, G. H., Cameron, I. L., Wheatley, D. N. (eds.), Water and the Cell. Springer: Dordrecht, the Netherlands. pp. 113–123.
  • Chauhana, P., Verma, H. N., Sisodia, R., Kesari, K. K. (2017). Microwave radiation (2.45 GHz)-induced oxidative stress: Whole-body exposure effect on histopathology of wistar rats. Electromagn. Biol. Med. 36:20–30.
  • Cortas, N. K., Wakid, N. W. (1990). Determination of inorganic nitrate in serum and urine by a kinetic cadmium-reduction method. Clin. Chem. 36:1440–1443.
  • Curtin, J. F., Donovan, M., Cotter, T. G. (2002). Regulation and measurement of oxidative stress in apoptosis. J. Immunol. Methods. 265:49–72.
  • Dasdag, S., Akdag, M. Z. (2016). The link between radiofrequencies emitted from wireless technologies and oxidative stress. J. Chem. Neuroanat. 75:85–93. doi 10.1016/j.jchemneu.2015.09.001.
  • Dasdag, S., Akdag, M. Z., Aksen, F., et al.. (2004). Does 900 MHz GSM mobile phone exposure affect rat brain? Electromagn. Biol. Med. 23:201–214.
  • Dasdag, S., Akdag, M. Z., Erdal, M. E., et al.. (2015). Effects of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on microRNA expression in brain tissue. Int. J. Radiat. Biol. 91:555–561. doi 10.3109/09553002.2015.1028599.
  • Dasdag, S., Akdag, M. Z., Kizil, G., Kizil, M., et al. (2012). Effect of 900 MHz radio frequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the brain. Electromagn. Biol. Med. 31:67–74. doi 10.3109/15368378.2011.624654.
  • Dasdag, S., Akdag, M. Z., Ulukaya, E., Uzunlar, A. K., et al. (2009). Effect of mobile phone exposure on apoptotic glial cells and status of oxidative stress in rat brain. Electromagn. Biol. Med. 28:342–354. doi 10.3109/15368370903206556.
  • Dasdag, S., Bilgin H. M., Akdag M. Z., et al. (2008). Effect of long term mobile phone exposure on oxidative antioxidative processes and nitric oxide in rats. Biotechnol. & Biotechnol. Equip. 22:992–997. doi 10.1080/13102818.2008.10817595.
  • De Gannes, P.F., Masuda, H., Billaudel, B., et al. (2017). Effects of GSM and UMTS mobile telephony signals on neuron degeneration and blood-brain barrier permeation in the rat brain. Sci Rep. 7:15496. doi 10.1038/s41598-017-15690-1.
  • Desai, N. R., Kesari, K. K., Agarwal, A. (2009). Pathophysiology of cell phone radiation: Oxidative stress and carcinogenesis with focus on male reproductive system. Reprod. Biol. Endocrinol. 7:114. doi 10.1186/1477-7827-7-114.
  • Deshmuck, P. S., Megha, K., Banerjee, B. D., et al. (2013). Detection of low level microwave radiation induced deoxyribonucleic acid damage vis‑a‑vis genotoxicity in brain of Fischer rats. Toxicol. Int. 20:19–24. doi 10.4103/0971-6580.111549.
  • Deshmukh, P., Nasare, N., Megha, K., Banerjee, B., et al. (2015). Cognitive impairment and neurogenotoxic effects in rats exposed to low-intensity microwave radiation. Int. J. Toxicol. 34:284–290. doi 10.1177/1091581815574348.
  • Dizdaroglu, M. (2015). Oxidatively induced DNA damage and its repair in cancer. Mutat. Res. 763:212–245. doi 10.1016/j.mrrev.2014.11.002.
  • Dogan, M., Turtay, M. G., Oguzturk, H., et al.. (2012). Effects of electromagnetic radiation produced by 3G mobile phones on rat brains: Magnetic resonance spectroscopy, biochemical, and histopathological evaluation. Hum. Exp. Toxicol. 31:557–564. doi 10.1177/0960327111412092.
  • Dogan, M. S., Yavas M. C., Yavuz, Y., et al. (2017). Effect of electromagnetic fields and antioxidants on trace element content in rat teeth. Drug Des. Dev. Ther. 11:1393–1398. doi 10.2147/DDDT.S132308.
  • Erel, O. (2004a). A novel automated method to measure total antioxidant response against potent free radical reactions. Clin. Biochem. 37:112–119. doi 10.1016/j.clinbiochem.2003.10.014.
  • Erel, O. (2004b). A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 37:277–285. doi 10.1016/j.clinbiochem.2003.11.015.
  • Erel, O. (2005). A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 38:1103–1111. doi 10.1016/j.clinbiochem.2005.08.008.
  • Erel, Y., Yazici, N., Ozvatan S., et al.. (2009). Detection of irradiated quail meat by using DNA comet assay and evaluation of comets by image analysis. Radiat. Phys. Chem. 78:776–781. doi 10.1016/j.radphyschem.2009.05.023.
  • Eser, O., Songur, A., Aktas, C. (2013). The effect of electromagnetic radiation on the rat brain: An experimental study. Turk. Neurosurg. 23:707–715. doi 10.5137/1019-5149.JTN.7088-12.2.
  • Esmekaya, M. A., Sırav, B., Ozer, C., Seyhan, N. (2011). Effects of radiofrequency radiation on brain tissue oxidant and antioxidant levels in rats. Gazi Med. J. 22:100–104. doi 10.5152/gmj.2011.22.
  • Esmekaya, M. A., Tuysuz, M. Z., Tomruk, A., et al. (2016). Effects of cell phone radiation on lipid peroxidation, glutathione and nitric oxide levels in mouse brain during epileptic seizure. J. Chem. Neuroanat. 75:111–115. doi 10.1016/j.jchemneu.2016.01.011.
  • Falzone, N., Huyser, C., Franken, D. R., Leszczyski, D. (2010). Mobile phone radiation does not induce pro-apoptosis effects in human spermatozoa. Radiat. Res. 174:169–176. doi 10.1667/RR2091.1.
  • Finnie, J. W., Blumbergs, P. C., Cai, Z., Manavis, J. (2009a). Expression of the water channel protein, aquaporin-4, in mouse brains exposed to mobile telephone radiofrequency fields. Pathology. 41:473–475. doi 10.1080/00313020902885045.
  • Finnie, J. W., Chidlow, G., Blumbergs, P. C., Manavis, J., et al. (2009b). Heat shock protein induction in fetal mouse brain as a measure of stress after whole of gestation exposure to mobile telephony radiofrequency fields. Pathology. 41:276–279. doi 10.1080/00313020902756261.
  • Foster, K. R. (2006). The mechanisms paradox. In: Ayrapetyan, S. N., Markov, M. S. (eds.), Bioelectromagnetics: Current Concepts. Springer: Dordrecht, the Netherlands. pp. 17–29.
  • Gandhi, G., Kaur, G., Nisar, U. (2015). A cross-sectional case control study on genetic damage in individuals residing in the vicinity of a mobile phone base station. Electromagn. Biol. Med. 34:344–354. doi 10.3109/15368378.2014.933349.
  • Gapeyev, A. B., Mikhailik, E. N., Chemeris, N. K. (2009). Features of anti-inflammatory effects of modulated extremely high-frequency electromagnetic radiation. Bioelectromagnetics. 30:454–461. doi 10.1002/bem.v30:6.
  • Garaj-Vrhovac, V., Gajski, G., Pažanin, S., et al. (2011). Assessment of cytogenetic damage and oxidative stress in personel occupationally exposed to the pulsed microwave radiation of marine radar equipment. Int. J. Hyg. Environ. Health. 4:59–65. doi 10.1016/j.ijheh.2010.08.003.
  • Guler, G., Ozgur, E., Keles, H., et al. (2016). The neurodegenerative changes and apoptosis induced by intrauterine and extrauterine exposure of radiofrequency radiation. J. Chem. Neuroanat. 75:128–133. doi 10.1016/j.jchemneu.2015.10.006.
  • Gurler, H.S., Bilgici, B., Akar A., et al. (2014). Increased DNA oxidation (8-OHdG) and protein oxidation (AOPP) by low level electromagnetic field (2.45 GHz) in rat brain and protective effect of garlic. Int. J. Radiat. Biol. 90:892–896. doi 10.3109/09553002.2014.922717.
  • Haines, G., Marples, B., Daniel, P., Morris, I. (1998). DNA damage in human and mouse spermatozoa after in vitro-irradiation assessed by the comet assay. Adv. Exp. Med. Biol. 444:789–791.
  • Hardell, L., Carlberg, M. (2009). Mobile phones, cordless phones and the risk for brain tumours. Int. J. Oncol. 35:5–17.
  • Ilhan, A., Gurel, A., Armutcu, F., et al.. (2004). Ginkgo biloba prevents mobile phone-induced oxidative stress in rat brain. Clin. Chim. Acta. 340:153–162.
  • International Agency for Research on Cancer (IARC). (2011). Working group on the evaluation of carcinogenic risks to humans. In: Nonionizing Radiation, Part II: Radiofrequency Electromagnetic Fields. Lyon: IARC. pp. 415–481.
  • Irmak, M. K., Fadıllıoglu, E., Gulec M., et al. (2002). Effects of electromagnetic radiation from a cellular telephone on the oxidant and antioxidant levels in rabbits. Cell Biochem. Funct.. 20:279–283. doi 10.1002/cbf.976.
  • Jha, B. K. (2012). Effects of electromagnetic fields on human beings and electronic devices. Himalayan Phys. 3:38–39. doi 10.3126/hj.v3i0.7274.
  • Jing, J., Yuhua, Z., Xiao-Qian, Y., et al.. (2012). The influence of microwave radiation from cellular phone on fetal rat brain. Electromagn. Biol. Med. 31:57–66. doi 10.3109/15368378.2011.624652.
  • Kato, H., Liu, Y., Kogure, K., Kato, K. (1994). Induction of 27-kDa heat shock protein following cerebral ischemia in rat model of ischemic tolerance. Brain Res. 634:235–244.
  • Kennedy, E. K., McNamee, J. P., Lalonde, L. P., et al. (2012). Acellular comet assay: A tool for assessing variables influencing the alkaline comet assay. Radiat. Prot. Dosimetry. 148:155–161. doi 10.1093/rpd/ncr027.
  • Kesari, K. K., Kumar, S., Behari, J. (2011). 900 MHz microwave radiation promotes oxidation in rat brain. Electromagn. Biol Med. 30:219–234. doi 10.3109/15368378.2011.587930.
  • Kesari, K. K., Meena, R., Nirala, J., et al.. (2014). Effect of 3G cell phone exposure with computer controlled 2-D stepper motor on non-thermal activation of the hsp27/p38MAPK stress pathway in rat brain. Cell. Biochem. Biophys. 68:347–358. doi 10.1007/s12013-013-9701-x.
  • Kesari, K. K., Siddiqui, M. H., Meena, R., et al.. (2013). Cell phone radiation exposure on brain and associated biological systems. Indian J. Exp. Biol. 51:187–200.
  • Khalil, A. M., Gagaa, M. H., Alshamali, A. M. (2012). 8-Oxo-7, 8- dihydro-2ʹ-deoxyguanosine as a biomarker of DNA damage by mobile phone radiation. Hum. Exp. Toxicol. 31:734–740. doi 10.1177/0960327111433184.
  • Kolarevic, S., Kolarevic, M. K., Kostic, J., et al.. (2016). Assessment of the genotoxic potential along the Danube river by application of the comet assay on haemocytes of freshwater mussels: The joint Danube survey 3. Sci. Total Environ. 540:377–385. doi 10.1016/j.scitotenv.2015.06.061.
  • Lai, H., Bioinitiative Report. (2012). Radiofrequency radiation (RFR) and DNA damage. Section 6; CA: BioInitiative Working Group. USA, Santa Barbara. pp. 1–14. www.bioinitiative.org.
  • Lai, H., Singh, N. P. (2004). Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ. Health Perspect. 112:687–694. doi 10.1289/ehp.6355.
  • Luukkonen, J., Juutilainen, J., Naarala, J. (2010). Combined effects of 872 MHz radiofrequency radiation and ferrous chloride on reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells. Bioelectromagnetics. 31:417–424. doi 10.1002/bem.20579.
  • Megha, K., Deshmukh, P. S., Banerjee, B. D., et al. (2015). Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain. NeuroToxicology. 51:158–165. doi 10.1016/j.neuro.2015.10.009.
  • Narinyan, L., Ayrapetyan, S. (2017). Cyclic AMP-dependent signaling system is a primary metabolic target for non-thermal effect of microwaves on heart muscle hydration. Electromagn. Biol. Med. 36:182–191. doi 10.1080/15368378.2016.1241803.
  • Nazıroglu, M., Gumral, N. (2009). Modulator effects of L-carnitine and selenium on wireless devices (2.45 GHz)-induced oxidative stress and electroencephalography records in brain of rat. Int. J. Radiat. Biol. 85:680–689. doi 10.1080/09553000903009530.
  • Nikoghosyan, A., Heqimyan, A., Ayrapetyan, S. (2016). Non-thermal microwave radiation-induced brain tissue dehydration as a potential factor for brain functional impairment. Int. J. Basic Appl. ScI. 5:188–195. doi 10.14419/ijbas.v5i4.
  • Olgar, Y., Hidisoglu, E., Cenk, M., et al.. (2015). 2.1 GHz electromagnetic field does not change contractility and intracellular Ca 2 transients but decreases β -adrenergic responsiveness through nitric oxide signaling in rat ventricular myocytes. Int. J. Radiat. Biol. 91:851–857. doi 10.3109/09553002.2015.1068462.
  • Olive, P. L., Banath, J. P., Durand, R. E. (1990). Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the “Comet” Assay. Radiat Res, 122: 86–94.
  • Ongel, K., Gumral, N., Ozguner, F. (2009). The potential effects of electromagnetic field: A review. Cell.L Membranes. Free. Radical Res. 1:85–89.
  • Ozguner, F., Bardak, Y., Cömlekci, S. (2006). Protective effects of melatonin and caffeic acid phenethyl ester against retinal oxidative stress in long-term use of mobile phone. Mol. Cell. Biochem. 282:83–88. doi 10.1007/s11010-006-1267-0.
  • Ozgur, E., Guler, G., Seyhan, N. (2010). Mobile phone radiation-induced free radical damage in the liver is inhibited by the antioxidants N-acetyl cysteine and epigallocatechin-gallate. Int. J. Radiat. Biol. 86:935–945. doi 10.3109/09553002.2010.486016.
  • Paulraj, R., Behari, J. (2006). Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutat. Res. 596:76–80. doi 10.1016/j.mrfmmm.2005.12.006.
  • Paulraj, R., Behari, J. (2007). Radio frequency radiation effects on protein kinase C activity in rats brain. Mutat. Res. 545:127‑30.
  • Person, T., Tornevik, C. H., Larsson, L. E., Loven, J. (2012). Output power distrubitions of terminals in 3G mobile communication network. Bioelectromagnetics. 33:320–325. doi 10.1002/bem.20710.
  • Phillips, J. L., Singh, N. P., Lai, H. (2009). Electromagnetic fields and DNA damage. Pathophysiology. 16:79–88. doi 10.1016/j.pathophys.2008.11.005.
  • Rojas, E., Lopez, M. C., Valverde, M. (1999). Single cell gel electrophoresis assay: Methodology and applications review. J. Chromatogr. B. 722:225–254. doi 10.1016/S0378-4347(98)00313-2.
  • Sahin, D., Ozgur, E., Guler, G., Tomruk, A., et al.. (2016). The 2100 MHz radiofrequency radiation of a 3G-mobile phone and the DNA oxidative damage in brain. J. Chem. Neuroanat. 75:94–98. doi 10.1016/j.jchemneu.2016.01.002.
  • Singh, N. P., McCoy, M. T., Tice, R. R., Schneider, E. L. (1988). A simple technique for quantization of low levels of DNA damage in individual cells. Exp. Cell Res. 175:184–191.
  • Sirav, B., Seyhan, N. (2016). Effects of GSM modulated radiofrequency electromagnetic radiation on permeability of blood-brain barrier in male & female rats. J. Chem. Neuroanat. 75:123–127. doi 10.1016/j.jchemneu.2015.12.010.
  • Su, L., Wei, X., Xu, Z., Chen, G. (2017). RF-EMF exposure at 1800 MHz did not elicit DNA damage or abnormal cellular behaviors in different neurogenic cells. Bioelectromagnetics. 38:175–185. doi 10.1002/bem.21999.
  • Su, L., Yimaer, A., Xu, Z., Chen, G. (2018). Effects of 1800 MHz RF-EMF exposure on DNA damage and cellular functions in primary cultured neurogenic cells. Int. J. Radiat. Biol. 94:295–305. doi 10.1080/09553002.2018.1432913.
  • Tang, J., Zhang, Y., Yang, L., Chen, Q., et al. (2015). Exposure to 900 MHz electromagnetic fields activates the mkp-1/ERK pathway and causes blood-brain barrier damage and cognitive impairment in rats. Brain Res. 1601:92–101. doi 10.1016/j.brainres.2015.01.019.
  • Trosic, I., Pavicic, I., Milkovic-Kraus, S., et al.. (2011). Effect of electromagnetic radiofrequency radiation on the rats brain, liver and kidney cells measured by comet assay coll. Antropology. 35:1259–1264.
  • Verschaeve, L., Heikkinen, P., Verheyen, G., et al. (2006). Investigation of Co-genotoxic effects of radiofrequency electromagnetic fields in vivo. Radiat. Res. 165:598–607. doi 10.1667/RR3559.1.
  • Vijayalaxmi, Prihoda, T. J. (2012). Genetic damage in human cells exposed to non-ionizing radiofrequency fields: A meta-analysis of the data from 88 publications (1990–2011). Mutat. Res. 749:1–16. doi 10.1016/j.mrgentox.2012.09.007.
  • Xu, S., Zhou, Z., Zhang, L., et al.. (2010). Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons. Brain Res. 1311:189–196. doi 10.1016/j.brainres.2009.10.062.
  • Yao, K., Wu, W., Wang, K., et al.. (2008). Electromagnetic noise inhibits radiofrequency radiation-induced DNA damage and reactive oxygen species increase in human lens epithelial cells. Mol. Vis. 14:964–969.
  • Yariktas, M., Doner, F., Ozguner, F., et al.. (2005). Nitricoxide level in the nasal and sinus mucosa after exposure to electromagnetic field. Otolaryngol. Head. Neck. Surg. 132:713–716. doi 10.1016/j.otohns.2005.01.012.
  • Young, J. (2007). Biomarkers of oxidative stress in schizophrenic and control subjects. Prostaglandins. Leukotrienes. Essent. Fatty. Acids. 76:73–85. doi 10.1016/j.plefa.2006.11.003.
  • Ziskin, M.C. 2006. Physiological mechanisms underlying millimeter wave therapy. In: Bioelectromagnetics Current Concepts. Ayrapetyan SN, Markov MS, (Eds.) Springer, Dordrecht, the Netherlands, pp. 241–225.
  • Zmyslony, M., Politanski, P., Rajkowska, E., et al. (2004). Acute exposure to 930 MHz CW electromagnetic radiation in vitro affects reactive oxygen species level in rat lymphocytes treated by iron ions. Bioelectromagnetics. 25:324–328. doi 10.1002/bem.10191.
  • Zothansiama, Zosangzuali, M., Lalramdinpuii, M., Jagetia, G. C. (2017). Impact of radiofrequency radiation on DNA damage and antioxidants in peripheral blood lymphocytes of humans residing in the vicinity of mobile phone base stations. Electromagn. Biol. Med. 36:295–305. doi 10.1080/15368378.2017.1350584.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.