86
Views
0
CrossRef citations to date
0
Altmetric
Articles

Microwave diathermy induces mitogen-activated protein kinases and tumor necrosis factor-α in cultured human monocytes

, , , &
Pages 218-229 | Received 10 Nov 2018, Accepted 21 Apr 2019, Published online: 11 May 2019

References

  • Alexandre, J., Hu, Y., Lu, W., et al. (2007). Novel action of paclitaxel against cancer cells: Bystander effect mediated by reactive oxygen species. Cancer Res. 67:3512–3517. doi:10.1158/0008-5472.CAN-06-3914
  • Andrikopoulos, A., Adamopoulos, A., Seimenis, I., Koutsojannis, C. M. (2017). Microwave diathermy in physiotherapy units: A survey on spatial and time heterogeneity of electromagnetic field. J. Radiol. Prot. 26;37:N27–N41. doi:10.1088/1361-6498/aa6e63
  • Beachy, S. H., Repasky, E. A. (2011). Toward establishment of temperature thresholds for immunological impact of heat exposure in humans. Int. J. Hyperthermia. 27:344–352. doi:10.3109/02656736.2011.562873
  • Chakraborty, A., Held, K. D., Prise, K. M., et al. (2009). Bystander effects induced by diffusing mediators after photodynamic stress. Radiat. Res. 172:74–81. doi:10.1667/RR1669.1
  • Chen, L., Deng, H., Cui, H., et al. (2017). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 9:7204–7218. doi:10.18632/oncotarget.23208
  • Chen, T., Guo, J., Han, C., et al. (2009). Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway. J. Immunol. 182:1449–1459.
  • Cleary, S. F., Liu, L. M., Merchant, R. E. (1990). In vitro lymphocyte proliferation induced by radio-frequency electromagnetic radiation under isothermal conditions. Bioelectromagnetics. 11:47–56.
  • Conradi, E., Pages, I. H. (1989). Effects of continuous and pulsed microwave irradiation on distribution of heat in the gluteal region of mini pigs. A Comparative Study Scand. J. Rehabil. Med. 21:59–62.
  • Dahle, J., Bagdonas, S., Kaalhus, O., et al. (2000). The bystander effect in photodynamic inactivation of cells. Biochim. Biophys. Acta. 1475:273–280.
  • Draper, D., Knight, K., Fujiwara, T., Castel, C. (1999). Temperature change in human muscle during and after pulsed short-wave diathermy. J. Orthop. Sport Phys. Ther. 29:13–18. doi:10.2519/jospt.1999.29.1.13
  • European Parliament and Council Directive 2005/36/EC of 7 September 2005 on the recognition of professional qualifications Treaty establishing the European Community. Official Journal of the European Union: European Parliament, Council of the European Union; 2005.
  • European Parliament and Council Directive 2013/35/EU of 26 June 2013 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields). Official Journal of the European Union: European Parliament, Council of the European Union; 2013.
  • Floderus, B., Stenlund, C., Carlgren, F. (2002). Occupational exposures to high frequency electromagnetic fields in the intermediate range (> 300 Hz-10 MHz). Bioelectromagnetics. 23:568–577. doi:10.1002/bem.10050
  • Ghulam, S., Shah, S., Farrow, A. (2007). Investigation of practices and procedures in the use of therapeutic diathermy: A study from the physiotherapists’ health and safety perspective. Physiother. Res. Int. 12:228–241. doi:10.1002/pri.382
  • Goats, G. C. (1990). Physiotherapy treatment modalities: Microwave diathermy. Br. J. Sp. Med. 24:4. doi:10.1136/bjsm.24.4.212
  • ICNIRP. (2009). Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 97:257–258. doi:10.1097/HP.0b013e3181aff9db
  • IEC 60601-2-6 2012 Medical Electrical Equipment-Parts 2–6: Particular Requirements for the Basic Safety and Essential Performance of Microwave Therapy Equipment (Geneva: International Electrotechnical Commission, ed. 2.0).
  • International Agency for Research on Cancer (IARC). (2002). Non-Ionising Radiation, Part 1: Static and Extremely Low Frequency (ELF) Electric and Magnetic Fields. Monograph 80. Lyon (France): IARC.
  • International Agency for Research on Cancer (IARC). (2011). IARC Classifies Radiofrequency Electromangetic Fields as Possible Carcinogen to Humans. Lyon (France): IARC.
  • Karpowicz, J., Gryz, K. (2013). An assessment of hazards caused by electromagnetic interaction on humans present near short-wave physiotherapeutic devices of various types including hazards for users of electronic active implantable medical devices (AIMWD). Biomed. Res. Int. 2013: 8 pages,150143. https://doi.org/10.1155/2013/150143.
  • Koutsojannis, C., Andrikopoulos, A., Adamopoulos, A., Seimenis, I. (2018). Microwave diathermy in physiotherapy: Introduction and evaluation of a quality control procedure. Radiat. Prot. Dosimetry. 181:229–239. doi:10.1093/rpd/ncy018
  • Kubes, J., Svoboda, J., Rosina, J., et al. (2008). Immunological response in the mouse melanoma model after local hyperthermia. Physiol. Res. 57:459.
  • Kurppa, K., Holmberg, P. C., Hernberg, S., et al. (1983). Screening for occupational exposures and congenital malformations. Scand. J. Work Environ. Health. 9:89–93. doi:10.5271/sjweh.2418
  • Lagoumintzis, G., Christofidou, M., Dimitracopoulos, G., Paliogianni, F. (2003). Pseudomonas aeruginosa slime glycolipoprotein is a potent stimulant of tumor necrosis factor alpha gene expression and activation of transcription activators nuclear factor kappa B and activator protein 1 in human monocytes. Infect. Immun. 71:4614–4622.
  • Lagoumintzis, G., Xaplanteri, P., Dimitracopoulos, G., Paliogianni, F. (2008). TNF-alpha induction by Pseudomonas aeruginosa lipopolysaccharide or slime-glycolipoprotein in human monocytes is regulated at the level of Mitogen-activated Protein Kinase activity: A distinct role of Toll-like receptor 2 and 4. Scand. J. Immunol. 67:193–203. doi:10.1111/j.1365-3083.2007.02053.x
  • Lehman, J. F., Guy, A. W., Johnston, V. C., et al. (1962). Comparison of relative heating patterns produced in tissues by exposure to microwave energy at frequencies of 2450 and 900 Mc. Ach. Phys. Med. Rehabil. 43:69–76.
  • Leszczynski, D., Joenvaara, S., Reivinen, J., Kuokka, R. (2002). Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: Molecular mechanism for cancer and blood-brain barrier-related effects. Differentiation. 70:120–129. doi:10.1046/j.1432-0436.2002.700207.x
  • Liu, Y. Z., Wang, Y. X., Jiang, C. L. (2017). Inflammation: The common pathway of stress-related diseases. Front. Hum. Neurosci. 11:316. doi:10.3389/fnhum.2017.00316
  • Logue, J. N., Hamburger, S., Silverman, P. M., Chiacchierini, R. P. (1985). Congenital anomalies and paternal occupational exposure to shortwave, microwave, infrared, and acoustic radiation. J. Occup. Med. 27:451–452.
  • Maccà, I., Scapellato, M. L., Carrieri, M., et al. (2008). Occupational exposure to electromagnetic fields in physiotherapy departments. Radiat. Prot. Dosimetry. 128:180–190. doi:10.1093/rpd/ncm309
  • McDonald, A. D., Armstrong, B., Cherry, N. M., et al. (1986). Spontaneous abortion and occupation. J. Occup. Med. 28:1232–1238.
  • Mori, I., Ozaki, T., Tabuse, K., et al. (2009). Microwave cell death: Molecular analysis using DNA electrophoresis, PCR amplification and TUNEL. Pathol. Int. 59:294–299. doi:10.1111/j.1440-1827.2009.02368.x
  • Moseley, H. (1988). Non-Lonising Radiation: Microwaves, Ultraviolet and Laser Radiation Medical Physics Handbook No.18. Bristol: Adam Hilger.
  • Murray, C. C., Kitchen, S. (2000). Effect of pulse repetition rate on the perception of thermal sensation with pulsed shortwave diathermy. Physiother. Res. Int. 5:73–84.
  • Novoselova, E. G., Fesenko, E. E., Makar, V. R., Sadovnikov, V. B. (1999). Microwaves and cellular immunity. II. Immunostimulating effects of microwaves and naturally occurring antioxidant nutrients. Bioelectrochem. Bioenerg. 49:37–41.
  • Novoselova, E. T., Fesenko, E. E. (1998). Stimulation of production of tumor necrosis factor by murine macrophages when exposed in vivo and in vitro to weak electromagnetic waves in the centimeter range. Biofizika. 43:1132–1133.
  • Olle, J. (2009). Disturbance of the immune system by electromagnetic fields-A potentially underlying cause for cellular damage and tissue repair reduction which could lead to disease and impairment. Pathophysiol. 16:157–177. doi:10.1016/j.pathophys.2009.03.004
  • Prise, K. M., Folkard, M., Michael, B. D. (2003). Bystander responses induced by low LET radiation. Oncogene. 22:7043–7049. doi:10.1038/sj.onc.1206991
  • Reuter, S., Gupta, S. C., Chaturvedi, M. M., Aggarwal, B. B. (2010). Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 49:1603–1616. doi:10.1016/j.freeradbiomed.2010.09.006
  • Roti Roti, J. L. (2008). Cellular responses to hyperthermia (40–46 degrees C): Cell killing and molecular events. Int. J. Hyperthermia. 24:3–15. doi:10.1080/02656730701769841
  • Rutault, K., Hazzalin, C. A., Mahadevan, L. C. (2001). Combinations of ERK and p38 MAPK inhibitors ablate tumor necrosis factor-alpha (TNF-alpha) mRNA induction. Evidence for selective destabilization of TNF-αlpha transcripts. J. Biol. Chem. 276:6666–6674. doi:10.1074/jbc.M005486200
  • Rzeszowska-Wolny, J., Przybyszewski, W. M., Review, W. M. (2009). Ionizing radiation-induced bystander effects, potential targets for modulation of radiotherapy. Eur. J. Pharmacol. 625:156–164. doi:10.1016/j.ejphar.2009.07.028
  • Sekins, K. M., Dundore, D., Emery, A. F., et al. (1980). Muscle blood flow changes in response to 915 MHz diathermy with surface cooling as measured by Xe133 clearance. Arch. Phys. Med. Rehabil. 61:105–113.
  • Shah, S. G. S., Farrow, A. (2014). Systematic literature review of adverse reproductive outcomes associated with physiotherapists‘ occupational exposures to non-ionizing radiation. J. Occup. Health. 56:323–331.
  • Shields, N., O‘Hare, N., Gormley, J. (2004). An evaluation of safety guidelines to restrict exposure to stray radiofrequency radiation from short-wave diathermy units. Phys. Med. Biol. 49:2999–3015.
  • Shields, N., O’ Hare, N., Boyle, G., Gormley, J. (2003). Development and application of a quality control procedure for short-wave diathermy units. Med. Biol. Eng. Comput. 41:62–68. doi:10.1007/BF02343540
  • van Deventer, E., van Rongen, E., Saunders, R. (2011). WHO research agenda for radiofrequency fields. Bioelectromagnetics. 32:417–421. doi:10.1002/bem.20660
  • Welc, S. S., Phillips, N. A., Oca-Cossio, J., et al. (2012). Hyperthermia increases interleukin-6 in mouse skeletal muscle. Am. J. Physiol. Cell Physiol. 303:C455–66. doi:10.1152/ajpcell.00028.2012
  • Widel, M., Krzywon, A., Gajda, K., et al. (2014). Induction of bystander effects by UVA, UVB, and UVC radiation in human fibroblasts and the implication of reactive oxygen species. Free Radic. Biol. Med. 68:278–287. doi:10.1016/j.freeradbiomed.2013.12.021
  • Xaplanteri, P., Lagoumintzis, G., Dimitracopoulos, G., Paliogianni, F. (2009). Synergistic regulation of Pseudomonas aeruginosa-induced cytokine production in human monocytes by mannose receptor and TLR2. Eur. J. Immunol. 39:730–740. doi:10.1002/eji.200838872

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.