170
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluating the thermal performance of a balloon-based renal sympathetic denervation system with array electrodes: a finite element study

, , , , &
Pages 488-501 | Received 28 Jan 2021, Accepted 18 Jul 2021, Published online: 05 Aug 2021

References

  • Abraham, J. P., B. D. Plourde, B. Sun, L. J. Vallez, and C. S. Staniloe. 2015. The effect of plaque removal on pressure drop and flow rate through an idealized stenotic lesion [J]. Biol. Med. 8:1–7.
  • Abraham, J. P., E. M. Sparrow, and R. D. Lovik. 2008. Unsteady, three-dimensional fluid mechanic analysis of blood flow in plaque-narrowed and plaque-free arteries [J]. Int. J. Heat Mass Transf. 51:5633–41. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.038.
  • A Raisi, S. I., J. Pouliopoulos, P. Qian, P. King, K. Byth, M. T. Barry, J. Swinnen, A. Thiagalingam, and P. Kovoor. 2019. Comparison of two different radiofrequency ablation systems for renal artery denervation: Evaluation of short‐term and long‐term follow up [J]. Catheter. Cardiovasc. Interv. 93:E105–E111. doi:https://doi.org/10.1002/ccd.28038.
  • Atsushi, S., K. Masafumi, N. Shintaro, and K. Matsumura. 2018. Quantitative angiographic anatomy of the renal arteries and adjacent aorta in the swine for preclinical studies of intravascular catheterization devices [J]. Exp. Anim. 67:291–99. doi:https://doi.org/10.1538/expanim.17-0125.
  • Azizi, M., M. Sapoval, P. Gosse, M. Monge, G. Bobrie, P. Delsart, M. Midulla, C. Mounier-Véhier, P.-Y. Courand, P. Lantelme, T. Denolle, C. Dourmap-Collas, H. Trillaud, H. Pereira, P.-F. Plouin, G. Chatellier, and the Renal Denervation for Hypertension (DENERHTN) investigators. 2015. Optimum and stepped care standardized antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): A multicentre, open-label, randomized controlled trial [J]. Lancet, 385:1957–65. doi:https://doi.org/10.1016/S0140-6736(14)61942-5.
  • Berjano, E. J. and Trujillo, M. 2013. Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation [J]. Int. J. Hyperthermia.26:6 590–97
  • Bertog, S., T. A. Fischel, F. Vega, V. Ghazarossian, A. Pathak, L. Vaskelyte, D. Kent, H. Sievert, E. Ladich, K. Yahagi, and R. Virmani. 2017. Randomised, blinded and controlled comparative study of chemical and radiofrequency-based renal denervation in a porcine model [J]. EuroIntervention, 12:1898–1906. doi:https://doi.org/10.4244/EIJ-D-16-00206.
  • Cohen-Mazor, M., P. Mathur, J. R. L. Stanley, F. O. Mendelsohn, H. Lee, R. Baird, B. G. Zani, P. M. Markham, and K. Rocha-Singh. 2014. Evaluation of renal nerve morphological changes and norepinephrine levels following treatment with novel bipolar radiofrequency delivery systems in a porcine model [J]. J. Hypertens. 32:1678–92.
  • Cosman, E. R. 2009. Radiofrequency Lesions [M]. In: Lozano A.M., Gildenberg P.L., Tasker R.R. (eds).Textbook of stereotactic and functional neurosurgery, Germany: Springer Berlin Heidelberg, 1359-82.
  • Dong, B. L., and X. M. Hou. 1994. Ultrasonic mesurement of renal aretrial dimeter and blood flow index in normal individuals [J]. Chin. J. Ultrasound Imaging 3:87–89.
  • Dong, T., Q. Nan, Z. Tian, and Y. Y. Cheng. 2018b. Radiofrequency ablation of renal sympathetic nerve: Numerical simulation and ex vivo experiments [J]. Adv. Mech. Eng. 10:1–11.
  • Dong, T., Y. Y. Cheng, Z. Tian, Y. N. Liu, and Q. Nan. 2018a. Ex-vivo experimental study in hepatic vascular to simulate the radiofrequency ablation of renal sympathetic nerve []. Beijing Biomed. Eng. 37:265–72.
  • Doss, J. D. 1982. Calculation of electric fields in conductive media [J]. Med. Phys. 9:566–73. doi:https://doi.org/10.1118/1.595107.
  • Dzau, V. J., E. M. Antman, H. R. Black, D. L. Hayes, J. E. Manson, J. Plutzky, J. J. Popma, and W. Stevenson. 2006. The cardiovascular disease continuum validated: Clinical evidence of improved patient outcomes: Part I: Pathophysiology and clinical trial evidence (risk factors through stable coronary artery disease) [J]. Circulation 114:2850–70. doi:https://doi.org/10.1161/CIRCULATIONAHA.106.655688.
  • Esler, M. D., H. Krum, M. Schlaich, R. E. Schmieder, M. Böhm, and P. A. Sobotka. 2012. Renal sympathetic denervation for treatment of drug-resistant hypertension: One-year results from the Symplicity HTN-2 randomized, controlled trial [J]. Circulation 126:2976–82. doi:https://doi.org/10.1161/CIRCULATIONAHA.112.130880.
  • Esler, M. D., M. Bohm, H. Sievert, C. L. Rump, R. E. Schmieder, H. Krum, F. Mahfoud, and M. P. Schlaich. 2014. Catheter-based renal denervation for treatment of patients with treatment-resistant hypertension: 36-month results from the SYMPLICITY HTN-2 randomized clinical trial [J]. Eur.Heart. J. 35:1752–59. doi:https://doi.org/10.1093/eurheartj/ehu209.
  • Fang, Z., M. Moser, E. Zhang, E. Zhang, and W. J. Zhang. 2017. Design of a novel electrode of radiofrequency ablation for large tumors: A finite element study [J]. J. Eng. Sci. Med. Diagn. Ther. 1:011001–6. doi:https://doi.org/10.1115/1.4038129.
  • Gan, Q., X. K. Qu, K. Z. Gong, S. F. Guan, W. Z. Han, J. J. Dai, R. G. Li, M. Zhang, H. Liu, Y. J. Xu, Y. J. Zhang, and W. Y. Fang. 2015. Efficacy and safety of a novel multi-electrode radiofrequency ablation catheter for renal sympathetic denervation in pigs [J]. J. Geriatr .Cardiol .12:618–25.
  • Gonzalez-Suarez, A., and E. Berjano. 2016. Comparative analysis of different methods of modeling the thermal effect of circulating blood flow during RF cardiac ablation [J]. IEEE Trans. Biomed. Eng. 63:250–59. doi:https://doi.org/10.1109/TBME.2015.2451178.
  • Guo, X. M., F. Zhai, and Q. Nan. 2014b. The temperature field simulation of radiofrequency catheter-based renal sympathetic denervation for resistant hypertension [J]. Bio-Med. Mater. Eng. 24:315–21. doi:https://doi.org/10.3233/BME-130813.
  • Guo, X. M., Q. Nan, F. Zhai, H. J. Zhang. 2014a. Research status of renal sympathetic nerve ablation for the treatment of resistant hypertension [J]. Beijing Biomed. Eng. 33:430–33.
  • Kandzari, D. E., D. L. Bhatt, P. A. Sobotka, W. W. O’Neill, M. Esler, J. M. Flack, B. T. Katzen, M. B. Leon, J. M. Massaro, M. Negoita, S. Oparil, K. Rocha-Singh, C. Straley, R. R. Townsend, and G. Bakris. 2012. Catheter-based renal denervation for resistant hypertension: Rationale and design of the symplicity HTN-3 trial [J]. Clin Cardiol 35:528–35. doi:https://doi.org/10.1002/clc.22008.
  • Kandzari D.E, K. Kario, F. Mahfoud, S. A. Cohen; G. Pilcher, S. Pocock, R. Townsend, M. A. Weber, M. Böhm 2016. The SPYRAL HTN Global Clinical Trial Program: Rationale and design for studies of renal denervation in the absence (SPYRAL HTN OFF-MED) and presence (SPYRAL HTN ON-MED) of antihypertensive medications [J]. Am. Heart. J., 171:82-91.
  • Krum, H., M. Schlaich, R. Whitbourn, P. A. Sobotka, J. Sadowski, K. Bartus, B. Kapelak, A. Walton, H. Sievert, S. Thambar, W. T. Abraham, and M. Eler. 2009. Catheter-based renal sympathetic denervation for resistant hypertension: A multicenter safety and proof-of-principle cohort study [J]. Lancet 373:1275–81. doi:https://doi.org/10.1016/S0140-6736(09)60566-3.
  • Krum, H., M. P. Schlaich, P. A. Sobotka, M. Böhm, F. Mahfoud, K. Rocha-Singh, R. Katholi, and M. D. Esler. 2014. Percutaneous renal denervation in patients with treatment-resistant hypertension: Final 3-year report of the Symplicity HTN-1 study [J]. Lancet 383:622–29. doi:https://doi.org/10.1016/S0140-6736(13)62192-3.
  • Liu, H. X., Y. Y. Cheng, Z. Tian, X. Gao, M. Zhang, and Q. Nan. 2020. Flow field study of radiofrequency ablation of renal sympathetic nerve: Numerical simulation and PIV experiments [J]. Electromagn. Biol. Med. 39:262–72. doi:https://doi.org/10.1080/15368378.2020.1793167.
  • Mahfoud, F., C. A. Pipenhagen, L. Boyce Moon, S. Ewen, S. Kulenthiran, J. M. Fish, J. A. Jensen, R. Virmani, M. Joner, K. Yahagi, C. Tsioufis, and M. Bohm. 2017. Comparison of branch and distally focused main renal artery denervation using two different radio-frequency systems in a porcine model [J]. Int. J. Cardiol. 241:373–78. doi:https://doi.org/10.1016/j.ijcard.2017.04.057.
  • Manolis, A. S., A. A. Manolis, and H. Melita. 2017. Current status of renal artery angioplasty and stenting for resistant hypertension: A case series and review of the literature [J]. Curr. Hypertens. Rev. 13:93–103.
  • Matsumoto, K., R. Morishita, A. Moriguchi, N. Tomita, M. Aoki, H. Sakonjo, K. Matsumoto, T. Nakamura, J. Higaki, and T. Ogihara. 2001. Inhibition of neointima by angiotensin-converting enzyme inhibitor in porcine coronary artery balloon-injury model [J]. Hypertension 37:270–74. doi:https://doi.org/10.1161/01.HYP.37.2.270.
  • Nan, Q., Y. Y. Cheng, X. Gao, Y. Pang, and Z. Tian. 2020. In vitro experiment of the radiofrequency ablation of renal sympathetic denervation [J]. J. Beijing Univ. Technol. 46:524–32.
  • Ormiston, J. A., T. Watson, N. van Pelt, R. Stewart, J. T. Stewart, J. M. White, R. N. Doughty, F. Stewart, R. Macdonald, and M. W. I. Webster. 2013. Renal denervation for resistant hypertension using an irrigated radiofrequency balloon: 12-month results from the renal hypertension ablation device (RHAS) trial [J]. EuroIntervention 9:70–74. doi:https://doi.org/10.4244/EIJV9I1A11.
  • Patel, H. C., P. S. Dhillon, F. Mahfoud, A. C. Lindsay, C. Hayward, S. Ernst, A. R. Lyon, S. D. Rosen, and C. Di Mario. 2014. The biophysics of renal sympathetic denervation using radiofrequency energy [J]. Clin. Res. Cardiol. 103:337–44. doi:https://doi.org/10.1007/s00392-013-0618-6.
  • Pathak, A., L. Coleman, A. Roth, J. Stanley, L. Bailey, P. Markham, S. Ewen, C. Morel, F. Despas, B. Honton, J. M. Senard, J. Fajadet, and F. Mahfoud. 2015. Renal sympathetic nerve denervation using intraluminal ultrasound within a cooling balloon preserves the arterial wall and reduces sympathetic nerve activity [J]. Eurointervention 11:477–84. doi:https://doi.org/10.4244/EIJV11I4A96.
  • Persell, S. D. 2011. Prevalence of resistant hypertension in the United States 2003-2008 [J]. Hypertension 57:1076–80. doi:https://doi.org/10.1161/HYPERTENSIONAHA.111.170308.
  • Plourde, B. D., L. J. Vallez, B. Sun, B. B. Nelson-Cheeseman, J. P. Abraham, C. S. Staniloae. 2016. Alterations of blood flow through arteries following atherectomy and the impact on pressure variation and velocity [J]. Cardiovasc. Eng. Technol. 7:280–89. doi:https://doi.org/10.1007/s13239-016-0269-7.
  • Sakakura, K., E. Ladich, Q. Cheng, F. Otsuka, K. Yahagi, D. R. Fowler, F. D. Kolodgie, R. Virmani, and M. Joner. 2014. Anatomic assessment of sympathetic peri-arterial renal nerves in man [J]. J. Am. Coll. Cardiol. 64:635–43. doi:https://doi.org/10.1016/j.jacc.2014.03.059.
  • Sakaoka, A., H. Terao, S. Nakamura, H. Hagiwara, T. Furukawa, K. Matsumura, and K. Sakakura. 2018. Accurate depth of radiofrequency-induced lesions in renal sympathetic denervation based on a fine histological stioning approach in a porcine model [J]. Circ Cardiovasc Interv 11:e005779. doi:https://doi.org/10.1161/CIRCINTERVENTIONS.117.005779.
  • Shao, Y. L., H. L. Leo, and K. J. Chua. 2017. Studying the thermal performance of a bipolar radiofrequency ablation with an improved electrode matrix device: In vitro experiments and modelling [J]. Appl. Therm. Eng. 116:623–35. doi:https://doi.org/10.1016/j.applthermaleng.2017.01.073.
  • Singh, S., and R. Repaka. 2018. Numerical study to establish relationship between coagulation volume and target tip temperature during temperature-controlled radiofrequency ablation [J]. Electromagn. Biol. Med. 37:13–22. doi:https://doi.org/10.1080/15368378.2017.1422262.
  • Takashima, K., M. Ohta, K. Yoshinaka, T. Mukai, and S. Oota. 2009. Catheter and guidewire simulator for intravascular surgery (Comparison between simulation results and medical images) [J]. Word Congr. Med. Phys. Biomed. Eng. 25:128–31.
  • Vongpatanasin, W. 2014. Resistant hypertension: A review of diagnosis and Management [J]. J. Am. Med. Assoc. 311:2216–24. doi:https://doi.org/10.1001/jama.2014.5180.
  • Weber, M., B. Hale, D. Hertz, S. Armstrong, and W. Gray. 2014. Clinical and cost effectiveness of renal denervation with the vessix system in patients with resistant hypertension [J]. J. Am. Coll. Cardiol. 63:A2082. doi:https://doi.org/10.1016/S0735-1097(14)62085-4.
  • Wood, M. A.Cao. H, V. Vorperian, S. Tungjitkusolmun, J.-Z. Tsai, D. Haemmerich, Y. B. Choy, and J. G. Webster 2001. Flow effect on lesion formation in RF cardiac catheter ablation [J]. IEEE Trans. Biomed. Eng 48:425–33.
  • World Health Organization. 2013. Global health risks: Mortality and burden of disease attributable to selected major risks [J]. Geneva:World Health Organization.
  • Ye, E., J. Baik, S. Lee, S. Y. Ryu, S. Yang, E.-K. Choi, W. H. Song, H. D. Yuk, C. W. Jeong, and S.M. Park. 2018. Design and simulation of novel laparoscopic renal denervation system: A feasibility study [J]. Int. J. Hyperthermia 35:9–18. doi:https://doi.org/10.1080/02656736.2018.1468037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.