343
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Role of 2.4 GHz radiofrequency radiation emitted from Wi-Fi on some miRNA and faty acids composition in brain

ORCID Icon, , , , , , & show all
Pages 281-292 | Received 20 Jan 2022, Accepted 31 Mar 2022, Published online: 17 Apr 2022

References

  • Ayrapetyan, S. 2018. The net water uptake by excitable cells is a primary mechanism for pain signal generation. J Bioequiv Availab. 10:3. doi:10.4172/0975-0851.1000e86.
  • Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Statist. Soc. B 57:289–300.
  • Blackman, C.F., S. G. Benane, L. S. Kinney, W.T. Joines, and T.E. House. 1982. Effects of ELF Fields on Calcium-Ion Efflux from Brain Tissue in Vitro. Radiation Research. 92:510–552.
  • Blaustein, M.P., and W.J. Lederer. 1999. Sodium/Calcium Exchange: Its Physiological Implications. Physiological Reviews. 57(3):763–854.
  • Brenna, J. T. 2016. Arachidonic acid needed in infant formula when docosahexaenoic acid is present. Nutr. Rev. 74:329–36. doi:10.1093/nutrit/nuw007.
  • Brini, M., and E. Carafoli. 2009. Calcium Pumps in Health and Disease. Physiol Rev. 89:1341–1378. doi:10.1152/physrev.00032.2008.
  • Burr, G., and M. M. Burr. 1930. On the nature and role of the fatty acids essential in nutrition. J. Biol. Chem. 86:587–621. doi:10.1016/S0021-9258(20)78929-5.
  • Dasdag, O., N. Adalier, and S. Dasdag. 2020. Electromagnetic radiation and Alzheimer’s disease. Biotechnol. Biotechnol. Equip. 34:1087–94. doi:10.1080/13102818.2020.1820378.
  • Dasdag, S., M. Z. Akdag, F. Aksen, M. Bashan, and H. Buyukbayram. 2004. Does 900 MHz GSM mobile phone exposure affect the rat brain? Electromagn. Biol. Med. 23:201–14. doi:10.1081/JBC-200044231.
  • Dasdag, S., M. Z. Akdag, F. Aksen, F. Yilmaz, M. Bashan, M. M. Dasdag, and M. S. Celik. 2003. Whole body exposure of rats to microwaves emitted from a cell phone doesNot affect the testes. Bioelectromagnetics 24:182–88. doi:10.1002/bem.10083.
  • Dasdag, S., M. Z. Akdag, M. E. Erdal, N. Erdal, O. I. Ay, M. E. Ay, S. G. Yilmaz, B. Tasdelen, and K. Yegin. 2015a. Long term and excessive use of 900 MHz radiofrequency radiation alter microRNA expression in brain. Int. J. Radiat. Biol. 91:306–11. doi:10.3109/09553002.2015.997896.
  • Dasdag, S., M. Z. Akdag, M. E. Erdal, N. Erdal, O. I. Ay, M. E. Ay, S. G. Yilmaz, B. Tasdelen, and K. Yegin. 2015b. Effects of 2.4 Ghz radiofrequency radiation emitted from Wi-FiEquipment on microRNA expression in brain tissue. Int. J. Radiat. Biol. 91:555–61. doi:10.3109/09553002.2015.1028599.
  • Dasdag, S., M. E. Erdal, N. Erdal, B. Tasdelen, M. T. Kiziltug, K. Yegin, and M. Z. Akdag. 2019. 900 MHz radiofrequency radiation has potential to increase the expression of rno-miR-145-p in brain. J. Int. Dent. Med. Res. 12:1652–58.
  • De, S. B., and Y. Christen, Editors. 2010. Macro roles for microRNAs in the life and death of neurons. Berlin: Springer.
  • Dutta, S.K., K. Das, B. I. Ghosh, and C. F. Blackman. 1992. Dose dependence of acetylcholinesterase activity in neuroblastoma cells exposed to modulated radio-frequency electromagnetic radiation. Bioelectromagnetics. 13(4):317–322.
  • Folch, J., M. Lees, and G. H. A. Sladane-Stanley. 1957. Simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497–509. doi:10.1016/S0021-9258(18)64849-5.
  • Fragopoulou, A. F., A. Polyzos, M. D. Papadopoulou, A. Sansone, A. K. Manta, E. Balafas, N. Kostomitsopoulos, A. Skouroliakou, C. Chatgilialoglu, A. Georgakilas, et al. 2018. Hippocampal lipidome and transcriptome profile alterations triggered by acute exposure of mice to GSM 1800 MHz mobile phone radiation: An exploratory study. Brain Behav. 8:e01001. Article number. doi:10.1002/brb3.1001.
  • He´bert, S. S., W. Mandemakers, A. S. Papadopoulou, and B. B. DeStrooper. 2010. microRNAs in sporadic Alzheimer’s disease and related dementias. In Macro roles for MicroRNAs in the life and death of neurons, ed. B. Strooper and Y. Christen, 91–98. Berlin: Springer.
  • International Agency for Research on Cancer (IARC). 2011. Working group on the evaluation of carcinogenic risks to humans. Nonionizing radiation. Part II: Radiofrequency electromagnetic fields. Lyon: IARC.
  • Kumar, R., P. S. Deshmukh, S. Sharma, and B. D. Banerjee. 2021. Effect of mobile phone signal radiation on epigenetic modulation in the hippocampus of Wistar rat. Environ. Res. 192:110297. doi:10.1016/j.envres.2020.110297.
  • Lin, J. M., X. M. Chen, M. L. Sun, X. J. Ou, Y. Wang, C. X. Li, X. J. Li, L. Zhao, Z. Y. Su, and H. M. Ye. 2021. Upregulation of microRNA-181a-5p increase the sensitivity of HS578T breast cancer cells to cisplatin by inducing vitamin D receptor-mediated cell autophagy. Oncol. Lett. 21:247. Article number. doi:10.3892/ol.2021.12508.
  • Liu, Y., T. Cheng, Y. Du, X. Hu, and W. Xia. 2020. LncRNA LUCAT1/miR-181a-5p axis promotes proliferation and invasion of breast cancer via targeting KLF6 and KLF15. BMC Molecular and Cell Biology. 21(69):1–11. doi:10.1186/s12860-020-00310-0.
  • Mangold, H. K. 1969. Aliphatic lipids, in Thin-layer Chromatography. E. Stahl. Ed., 2nd, 363–341. New York: Springer-Verlag.
  • Oyarce, G., G. Bravo-Arrepol, S. Trivino, F. Nanco, R. Hasbun, C. Perez, J. Becerra, and S. Torres. 2021. Effect of WiFi radiofrequencies on the content of fatty acid and ergosterol, a precursor of vitamin D in in-vitro cultures of the fungus Serpula himantioides. J. Chillean Chem. Soc. 66:5125–29. doi:10.4067/S0717-97072021000105125.
  • Pall, M.L. 2022. Electromagnetic Fields Act via Voltage-Gated Calcium Channel (VGCC) Activation to Cause Very Early Onset Alzheimer’s Disease: 18 Distinct Types of Evidence. Current Alzheimer Research 19(2):119–132.
  • Paris, C., V. Moreau, G. Deglane, E. Voirin, P. Erbacher, and N. Lenne-Samuel. 2010. Zinc nucleic acids are potent hydrolysis probes for quantitative PCR. Nucleic Acids Res. 38:e95. article number. doi:10.1093/nar/gkp1218.
  • Rai, S. N., H. E. Ray, X. Yuan, J. Pan, T. Hamid, and S. Prabhu. 2012. Statistical analysis of repeated microRNA high-throughput data with application to human heart failure: A review of methodology. Open Access Med. Stat. 2:21–31. doi:10.2147/OAMS.S27907.
  • Sert, C., M. Z. Akdag, M. Bashan, H. Buyukbayram, and S. Dasdag. 2002. ELF magnetic field effects on fatty acid composition of phospholipid fraction and reproduction of rats’ testes. Electromagn. Biol. Med. 21:19–29. doi:10.1081/JBC-120003108.
  • Song, X. M., Y. M. Xue, and H. R. Cai. 2021. Down-regulation of miR-181a-5p prevents Cerebral ischemic injury by upregulating En2 and activating Wnt/beta-catenin pathways. J. Stroke Cerebrovasc. Dis. 30:105485. Article number. doi:10.1016/j.jstrokecerebrovasdis.2020.105485.
  • Stanley-Samuelson, D. W., and R. H. Dadd. 1983. Long-chain polyunsaturated fatty acids: Patterns of occurrence in insects. Biochemistry 13:549–58.
  • Vaden, D. L., V. M. Gohil, Z. Gu, and M. L. Greenberg. 2005. Separation of yeast phospholipid using one-dimensional thin-layer chromatography. Anal. Biochem. 338:162–64. doi:10.1016/j.ab.2004.11.020.
  • Ziskin, M.C. 2006. Physiological mechanisms underlying millimeter wave therapy. Bioelectromagnetics Current Concepts, (Ed: Ayrapetyan, S.N., and Markov, M.S.,) pp 241–251, 2006 Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.