100
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Different effects of magnetic field on drug activity in human uterine sarcoma cell lines MES-SA and MES-SA/Dx5

& ORCID Icon
Pages 343-351 | Received 05 Apr 2022, Accepted 05 Jun 2022, Published online: 05 Jul 2022

References

  • Akbarnejad, Z., H. Eskandary, L. Dini, C. Vergallo, S. N. Nematollahi-Mahani, A. Farsinejad, M. F. S. Abadi, and M. Ahmadi. 2017. Cytotoxicity of temozolomide on human glioblastoma cells is enhanced by the concomitant exposure to an extremely low-frequency electromagnetic field (100 Hz, 100 G). Biomed. Pharmacother 92:254–64. doi:10.1016/j.biopha.2017.05.050.
  • Ashdown, C. P., S. C. Johns, E. Aminov, M. Unanian, W. Connacher, J. Friend, and M. M. Fuster. 2020. Pulsed low-frequency magnetic fields induce tumor membrane disruption and altered cell viability. Biophys. J 118:1552–63. doi:10.1016/j.bpj.2020.02.013.
  • Ashta, A., G. Motalleb, and M. Ahmadi-Zeidabadi. 2020. Evaluation of frequency magnetic field, static field, and Temozolomide on viability, free radical production and gene expression (p53) in the human glioblastoma cell line (A172). Electromagn. Biol. Med 39:298–309. doi:10.1080/15368378.2020.1793171.
  • Bauréus Koch, C. L. M., M. Sommarin, B. R. R. Persson, L. G. Salford, and J. L. Eberhardt. 2003. Interaction between weak low frequency magnetic fields and cell membranes. Bioelectromagn 24:395–402. doi:10.1002/bem.10136.
  • Calabrò, E. 2016. Competition between hydrogen bonding and protein aggregation in neuronal-like cells under exposure to 50 Hz magnetic field. Int. J. Radiat. Biol 92:395–403. doi:10.1080/09553002.2016.1175679.
  • Calabrò, E., and S. Magazù. 2018. Correlation between hydrogen/deuterium exchange and Amide I band intensity in hemoglobin aqueous solution under static or 50 Hz magnetic field. Phys. Lett. Sec. A: Gen. Atom. Solid State Phys 382:3405–11. doi:10.1016/j.physleta.2018.10.004.
  • Calabrò, E., M. Currò, M. T. Caccamo, R. Ientile, and S. Magazù. 2020. Competition between N–H bending vibration and α-helix polarization under 50 Hz magnetic field in SH-SY5Y neuronal-like cells. Spectr. Lett 53:458–65. doi:10.1080/00387010.2020.1771737.
  • Chang, K.-T., and C.-I. Weng. 2006. The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation. J. Appl. Phys 100:043917. doi:10.1063/1.2335971.
  • Ciarimboli, G., T. Ludwig, D. Lang, H. Pavenstädt, H. Koepsell, H.-J. Piechota, J. Haier, U. Jaehde, J. Zisowsky, and E. Schlatter. 2005. Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Ame. J. Pathol 167:1477–84. doi:10.1016/S0002-9440(10)61234-5.
  • Darwish, S. M., A. S. Darwish, and D. S. Darwish. 2020. An extremely low-frequency magnetic field can affect CREB protein conformation which may have a role in neuronal activities including memory. J. Phys. Comm 4:015009. doi:10.1088/2399-6528/ab66d2.
  • Dehkordi, S. Y., S. M. Firoozabadi, M. Forouzandeh Moghadam, and Z. Shankayi. 2021. Endocytosis induction by high-pulsed magnetic fields to overcome cell membrane barrier and improve chemotherapy efficiency. Electromagn. Biol. Med 40:438–45. doi:10.1080/15368378.2021.1923026.
  • Frank, N. Y., A. Margaryan, Y. Huang, T. Schatton, A. M. Waaga-Gasser, M. Gasser, M. H. Sayegh, W. Sadee, and M. H. Frank. 2005. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res 65:4320–33. doi:10.1158/0008-5472.CAN-04-3327.
  • Guo, J., Y. Zhou, K. Yang, Z. Yin, J. Ma, Z. Li, W. Sun, and M. Han. 2019. Effect of low-frequency magnetic field on the gel properties of pork myofibrillar proteins. Food Chem 274:775–81. doi:10.1016/j.foodchem.2018.09.028.
  • Harker, W. G., and B. I. Sikic. 1985. Multidrug (pleiotropic) resistance in doxorubicin-selected variants of the human sarcoma cell line MES-SA. Cancer Res 45:4091–96.
  • Hayashi, S., and M. Kakikawa. 2021. Exposure to 60 Hz magnetic field can affect membrane proteins and membrane potential in human cancer cells. Electromagn. Biol.Med 40:459–66. doi:10.1080/15368378.2021.1958340.
  • Hosoda, H., H. Mori, N. Sogoshi, A. Nagasawa, and S. Nakabayashi. 2004. Refractive indices of water and aqueous electrolyte solutions under high magnetic fields. J. Phys. Chem. A 108:1461–64. doi:10.1021/jp0310145.
  • Hu, C., C. S. Lancaster, Z. Zuo, S. Hu, Z. Chen, J. E. Rubnitz, S. D. Baker, and A. Sparreboom. 2012. Inhibition of OCTN2-mediated transport of carnitine by etoposide. Mol. Cancer Therap 11:921–29. doi:10.1158/1535-7163.MCT-11-0980.
  • Ikehara, T., H. Yamaguchi, K. Hosokawa, H. Miyamoto, and K. Aizawa. 2003. Effects of ELF magnetic field on membrane protein structure of living HeLa cells studied by Fourier transform infrared spectroscopy. Bioelectromagn 24:457–64. doi:10.1002/bem.10120.
  • Inaba, H., T. Saitou, K.-I. Tozaki, and H. Hayashi. 2004. Effect of the magnetic field on the melting transition of H 2O and D 2O measured by a high resolution and supersensitive differential scanning calorimeter. J. Appl. Phys 96:6127–32. doi:10.1063/1.1803922.
  • Ishida, S., J. Lee, D. J. Thiele, and I. Herskowitz. 2002. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc. Natl. Aca. Sci. USA 99:14298–302. doi:10.1073/pnas.162491399.
  • Kakikawa, M., T. Maeda, and S. Yamada. 2019. Combined effect of 60 Hz magnetic fields anticancer drugs on human hepatoma HepG2 cells. IEEE Electromagn. RF, Microw. Med. Biol 3:56–60. doi:10.1109/JERM.2018.2880341.
  • Luckie, D. B., M. E. Krouse, T. C. Law, B. I. Sikic, and J. J. Wine. 1996. Doxorubicin selection for MDR1/P-glycoprotein reduces swelling-activated K+ and Cl- currents in MES-SA cells. Am J. Physiol. - Cell Physiol 270:C1029–C1036. doi:10.1152/ajpcell.1996.270.4.C1029.
  • Maldonado-Moreles, A., T. Cordova-Fraga, H. Bonilla-Jaime, P. Y. Lopez-Camacho, and G. Basurto-Islas. 2021. Low frequency vortex magnetic field reduces amyloid β aggregation, increase cell viability and protect from amyloid β toxicity. Electromag. Biol. Med 40:191–200. doi:10.1080/15368378.2020.1830288.
  • Miyakoshi, Y., H. Yoshioka, Y. Toyama, Y. Suzuki, and H. Shimizu. 2005. The frequencies of micronuclei induced by cisplatin in newborn rat astrocytes are increased by 50-Hz, 7.5- and 10-mT electromagnetic fields. Environ. Health Prevent. Med 10:138–43. doi:10.1007/BF02900806.
  • Nakayama, K., A. Kanzaki, K. Ogawa, K. Miyazaki, N. Neamati, and Y. Takebayashi. 2002. Copper-transporting P-type adenosine triphosphatase (ATP7B) as a cisplatin based chemoresistance marker in ovarian carcinoma: Comparative analysis with expression of MDR1, MRP1, MRP2, LRP and BCRP. Int. J. Cancer 101:488–95. doi:10.1002/ijc.10608.
  • Novickij, V., J. Dermol, A. Grainys, M. Kranjc, and D. Miklavčič. 2017. Membrane permeabilization of mammalian cells using bursts of high magnetic field pulses. Peer J 5:e3267. doi:10.7717/peerj.3267.
  • Okabe, M., G. Szakács, M. A. Reimers, T. Suzuki, M. D. Hall, T. Abe, J. N. Weinstein, and M. M. Gottesman. 2008. Profiling SLCO and SLC22 genes in the NCI-60 cancer cell lines to identify drug uptake transporters. Mol. Cancer Therap 7:3081–91. doi:10.1158/1535-7163.MCT-08-0539.
  • Rageh, M. M., M. R. El-Garhy, and E. A. Mohamad. 2020. Magnetic fields enhance the anti-tumor efficacy of low dose cisplatin and reduce the nephrotoxicity. Naunyn-Schmiedeberg’s Arch. Pharmacol 393:1475–85. doi:10.1007/s00210-020-01855-9.
  • Shankayi, Z., S. M. P. Firoozabadi, and M. G. Mansurian. 2013. The effect of pulsed magnetic field on the molecular uptake and medium conductivity of leukemia cell. Cell Biochem. Biophys 65:211–16. doi:10.1007/s12013-012-9422-6.
  • Shankayi, Z., S. M. P. Firoozabadi, M. Mansourian, and A. Mahna. 2014. The effects of pulsed magnetic field exposure on the permeability of leukemia cancer cells. Electromagn. Biol. Med 33:154–58. doi:10.3109/15368378.2013.800103.
  • Takano, M., R. Yumoto, and T. Murakami. 2006. Expression and function of efflux drug transporters in intestine. Pharmacol. Therap 109:137–61. doi:10.1016/j.pharmthera.2005.06.005.
  • Tofani, S., D. Barone, M. Berardelli, E. Berno, M. Cintorino, P. Ossola, F. Ronchetto, E. Toso, and M. Eandi. 2003. Static and ELF magnetic fields enhance the in vivo anti-tumor efficacy of cis-platin against Lewis lung carcinoma, but not of cyclophosphamide against B16 melanotic melanoma. Pharmacol. Res 48:83–90.
  • Towhidi, L., S. M. P. Firoozabadi, H. Mozdarani, and D. Miklavcic. 2012. Lucifer yellow uptake by CHO cells exposed to magnetic and electric pulses. Radiol. Oncol 46:119–25. doi:10.2478/v10019-012-0014-2.
  • Wijnholds, J., G. L. Scheffer, M. Van Der Valk, P. Van der Valk, J. H. Beijnen, R. J. Scheper, and P. Borst. 1998. Multidrug resistance protein 1 protects the oropharyngeal mucosal layer and the testicular tubules against drug-induced damage. J. Experim. Med 188:797–808. doi:10.1084/jem.188.5.797.
  • Yuan, L.-Q., C. Wang, K. Zhu, H.-M. Li, W.-Z. Gu, D.-M. Zhou, J.-Q. Lai, D. Zhou, Y. Lv, S. Tofani, et al. 2018. The antitumor effect of static and extremely low frequency magnetic fields against nephroblastoma and neuroblastoma. Bioelectromagn 39:375–85. doi:10.1002/bem.22124.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.