105
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Self-attention-based generative adversarial network optimized with color harmony algorithm for brain tumor classification

, , &
Pages 31-45 | Received 11 Apr 2023, Accepted 25 Jan 2024, Published online: 18 Feb 2024

References

  • Aghamohammadi, A., S. A. BeheshtiShirazi, S. Y. Banihashem, S. Shishechi, R. Ranjbarzadeh, S. JafarzadehGhoushchi, and M. Bendechache. 2023. A deep learning model for ergonomics risk assessment and sports and health monitoring in self-occluded images. Signal Image Video Process. 1–13. doi:10.1007/s11760-023-02830-6.
  • Al-Galal, S. A. Y., I. F. T. Alshaikhli, and M. M. Abdulrazzaq. 2021. MRI brain tumor medical images analysis using deep learning techniques: A systematic review. Health Technol (Berl) 11 :267–82. doi:10.1007/s12553-020-00514-6.
  • Anari, S., N. TataeiSarshar, N. Mahjoori, S. Dorosti, A. Rezaie, and A. Darba. 2022. Review of deep learning approaches for thyroid cancer diagnosis. Math. Problems Eng 2022:1–8. doi:10.1155/2022/5052435.
  • Anjum, S., L. Hussain, M. Ali, M. H. Alkinani, W. Aziz, S. Gheller, A. A. Abbasi, A. R. Marchal, H. Suresh, and T. Q. Duong. 2022. Detecting brain tumors using deep learning convolutional neural network with transfer learning approach. Int. J. Imaging. Syst. Technol 32 :307–23. doi:10.1002/ima.22641.
  • BagherianKasgari, A., R. Ranjbarzadeh, A. Caputo, S. BaseriSaadi, and M. Bendechache. 2023. Brain tumor segmentation based on zernike moments, enhanced ant lion optimization, and convolutional neural network in MRI images. In Metaheuristics and optimization in computer and electrical engineering: Volume 2: Hybrid and improved algorithms, ed. N. Razmjooy, N. Ghadimi, and V. Rajinikanth, 345–66. Cham: Springer International Publishing.
  • Balaji, G. N., S. A. S. A. Mary, N. Mantravadi, and F. H. Shajin. 2023. Graph CNN-ResNet-CSOA transfer learning architype for an enhanced skin cancer detection and classification scheme in medical image processing. Int. J. Artif. Intell. Tools. doi:10.1142/S021821302350063X.
  • Chen, J., G. Yang, H. Khan, H. Zhang, Y. Zhang, S. Zhao, R. Mohiaddin, T. Wong, D. Firmin, and J. Keegan. 2021. JAS-GAN: Generative adversarial network based joint atrium and scar segmentations on unbalanced atrial targets. IEEE J. Biomed. Health Inform 26 :103–14. doi:10.1109/JBHI.2021.3077469.
  • Dhiravidachelvi, E., S. S. Pandi, R. Prabavathi, and C. B. Subramanian. 2023. Artificial Humming Bird Optimization-Based Hybrid CNN-RNN for Accurate Exudate Classification from Fundus Images. J. Digit. Imaging. 36:59–72. doi:10.1007/s10278-022-00707-7.
  • Di Ieva, A., C. Russo, S. Liu, A. Jian, M. Y. Bai, Y. Qian, and J. S. Magnussen. 2021. Application of deep learning for automatic segmentation of brain tumors on magnetic resonance imaging: A heuristic approach in the clinical scenario. Neuroradiology 63 :1253–1262. doi:10.1007/s00234-021-02649-3.
  • Fardad, M., E. M. Mianji, G. M. Muntean, and I. Tal. 2022, June. A fast and effective graph-based resource allocation and power control scheme in vehicular network slicing. 2022 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Bilbao, Spain, 1–6. IEEE.
  • Guan, X., G. Yang, J. Ye, W. Yang, X. Xu, W. Jiang, and X. Lai. 2022. 3D AGSE-VNet: an automatic brain tumor MRI data segmentation framework. BMC Med. Imaging 22 :1–18. https://ieee-dataport.org/competitions/brats-miccai-brain-tumor-dataset.
  • Huang, H., G. Yang, W. Zhang, X. Xu, W. Yang, W. Jiang, and X. Lai. 2021. A deep multi-task learning framework for brain tumor segmentation. Front. Oncol 11:690244. doi:10.3389/fonc.2021.690244.
  • Irmak, E. 2021. Multi-classification of brain tumor MRI images using deep convolutional neural network with fully optimized framework. Iranian J. Sci. Technol. Trans. Electric. Eng 45 :1015–36. doi:10.1007/s40998-021-00426-9.
  • Ismael, S. A. A., A. Mohammed, and H. Hefny. 2020. An enhanced deep learning approach for brain cancer MRI images classification using residual networks. Artif. Intell. Med. 102:101779. doi:10.1016/j.artmed.2019.101779.
  • Jia, Z., and D. Chen. 2020. Brain tumor identification and classification of MRI images using deep learning techniques. IEEE Access.
  • Jin, Y., G. Yang, Y. Fang, R. Li, X. Xu, Y. Liu, and X. Lai. 2021. 3D PBV-Net: an automated prostate MRI data segmentation method. Comput. Biol. Med. 128:104160. doi:10.1016/j.compbiomed.2020.104160.
  • Karayegen, G., and M. F. Aksahin. 2021. Brain tumor prediction on MR images with semantic segmentation by using deep learning network and 3D imaging of tumor region. Biomed. Signal Process. Control 66:102458. doi:10.1016/j.bspc.2021.102458.
  • Kasgari, A. B., S. Safavi, M. Nouri, J. Hou, N. T. Sarshar, and R. Ranjbarzadeh. 2023. Point-of-interest preference model using an attention mechanism in a convolutional neural network. Bioengineering 10 :495. doi:10.3390/bioengineering10040495.
  • Kumar, P. P., V. Bai, M. Amala, and R. P. Krish. 2023. Krill herd optimization algorithm with deep convolutional neural network fostered breast cancer classification using mammogram images. Concurr Comput. Pract Exp 35 (7). doi:10.1002/cpe.7605.
  • Kumar, M. P., B. Poornima, H. S. Nagendraswamy, and C. Manjunath. 2021. Structure-preserving NPR framework for image abstraction and stylization. J. Supercomput. 77 :8445–513. doi:10.1007/s11227-020-03547-w.
  • Li, H., Y. Nan, and G. Yang, 2022. LKAU-Net: 3D large-kernel attention-based u-net for automatic MRI brain tumor segmentation. Medical Image Understanding and Analysis: 26th Annual Conference, MIUA 2022, Cambridge, UK, July 27–29, 2022, Proceedings, 313–27. Cambridge, UK Springer International Publishing.
  • Liu, Y., G. Yang, M. Hosseiny, A. Azadikhah, S. A. Mirak, Q. Miao, S. S. Raman, and K. Sung. 2020. Exploring uncertainty measures in Bayesian deep attentive neural networks for prostate zonal segmentation. IEEE. Access 8:151817–151828. doi:10.1109/ACCESS.2020.3017168.
  • Liu, T., Z. Yuan, L. Wu, and B. Badami. 2021. Optimal brain tumor diagnosis based on deep learning and balanced sparrow search algorithm. Int. J. Imaging Syst. Technol 31 :1921–1935. doi:10.1002/ima.22559.
  • Nalepa, J., P. R. Lorenzo, M. Marcinkiewicz, B. Bobek-Billewicz, P. Wawrzyniak, M. Walczak, M. Kawulok, W. Dudzik, K. Kotowski, I. Burda, et al. 2020. Fully-automated deep learning-powered system for DCE-MRI analysis of brain tumors. Artif. Intell. Med. 102:101769. doi:10.1016/j.artmed.2019.101769.
  • Nan, Y., J. Del Ser, S. Walsh, C. Schönlieb, M. Roberts, I. Selby, K. Howard, J. Owen, J. Neville, J. Guiot, et al. 2022. Data harmonisation for information fusion in digital healthcare: A state-of-the-art systematic review, meta-analysis and future research directions. Information. Fusion 82:99–122. doi:10.1016/j.inffus.2022.01.001.
  • Pandi, S. S., A. Senthilselvi, J. Gitanjali, K. ArivuSelvan, J. Gopal, and J. Vellingiri. 2022. Rice plant disease classification using dilated convolutional neural network with global average pooling. Ecol. Modell. 474:110166. doi:10.1016/j.ecolmodel.2022.110166.
  • Pitchai, R., P. Supraja, A. H. Victoria, and M. Madhavi. 2021. Brain tumor segmentation using deep learning and fuzzy K-means clustering for magnetic resonance images. Neural Process. Lett. 53 :2519–32. doi:10.1007/s11063-020-10326-4.
  • Rai, H. M., and K. Chatterjee. 2021. 2D MRI image analysis and brain tumor detection using deep learning CNN model LeU-net. Multimedia Tools Appl. 80 :36111–36141. doi:10.1007/s11042-021-11504-9.
  • Ramesh, S., S. Sasikala, and N. Paramanandham. 2021. Segmentation and classification of brain tumors using modified median noise filter and deep learning approaches. Multimedia Tools Appl. 80 :11789–11813. doi:10.1007/s11042-020-10351-4.
  • Ramtekkar, P. K., A. Pandey, and M. K. Pawar. 2023. Accurate detection of brain tumor using optimized feature selection based on deep learning techniques. Multimedia Tools Appl. 82 :1–31. doi:10.1007/s11042-023-15239-7.
  • Ranjbarzadeh, R., S. Sadeghi, A. Fadaeian, S. JafarzadehGhoushchi, E. B. Tirkolaee, A. Caputo, and M. Bendechache. 2023. ETACM: An encoded-texture active contour model for image segmentation with fuzzy boundaries. Soft Comput. 1–13. doi:10.1007/s00500-023-08983-3.
  • Ranjbarzadeh, R., P. Zarbakhsh, A. Caputo, E. B. Tirkolaee, and M. Bendechache. 2024. Brain tumor segmentation based on optimized convolutional neural network and improved chimp optimization algorithm. Comput. Biol. Med. 168:107723. doi:10.1016/j.compbiomed.2023.107723.
  • Raschke, F., T. R. Barrick, T. L. Jones, G. Yang, X. Ye, and F. A. Howe. 2019. Tissue-type mapping of gliomas. NeuroImage: Clinical 21:101648. doi:10.1016/j.nicl.2018.101648.
  • Saba, T., A. S. Mohamed, M. El-Affendi, J. Amin, and M. Sharif. 2020. Brain tumor detection using fusion of hand crafted and deep learning features. Cogn. Syst. Res 59:221–230. doi:10.1016/j.cogsys.2019.09.007.
  • Sankareshwaran, S.P., G. Jayaraman, P. Muthukumar, and A. Krishnan. 2023. Optimizing rice plant disease detection with crossover boosted artificial hummingbird algorithm based AX-RetinaNet. Environ. Monit. Assess. 195 (9):1070. doi:10.1007/s10661-023-11612-z.
  • Sellam V., N. Kannan, S. Senthil Pandi, and K. Sathish Kumar. 2024. LBO-MPAM: Ladybug Beetle Optimization-based multilayer perceptron attention module for segmenting the skin lesion and automatic localization. J. Exp. Theor. Artif. Intell. doi:10.1080/0952813X.2023.2301374.
  • Senthil Pandi, S., A. Senthilselvi, M. Maragatharajan, and I. Manju. 2022. An optimal self adaptive deep neural network and spine‐kernelled chirplet transform for image registration. Concurr. Comput. Pract. Exp. 34 (27):e7297. doi:10.1002/cpe.7297.
  • Shajin, F. H., P. Rajesh, and V. K. NagojiRao. 2022. Efficient framework for brain tumour classification using hierarchical deep learning neural network classifier. Comput Methods Biomech Biomed Engin . Imaging Vis 1–8. doi:10.1080/21681163.2022.2111719.
  • Sharif, M. I., J. P. Li, M. A. Khan, S. Kadry, and U. Tariq. 2022. M3BTCNet: multi model brain tumor classification using metaheuristic deep neural network features optimization. Neural. Comput. Appl 36 :1–16. doi:10.1007/s00521-022-07204-6.
  • Shen, F., Y. Wang, and C. Liu. 2021. Change detection in SAR images based on improved non-subsampled shearlet transform and multi-scale feature fusion CNN. Ieee J-Stars. 14:12174–12186. doi:10.1109/JSTARS.2021.3126839.
  • Soltaninejad, M., G. Yang, T. Lambrou, N. Allinson, T. L. Jones, T. R. Barrick, F. A. Howe, and X. Ye. 2018. Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels. Comput. Methods Programs Biomed. 157:69–84. doi:10.1016/j.cmpb.2018.01.003.
  • Wu, P., and Q. Chang. 2020. Brain tumor segmentation on multimodal 3D-MRI using deep learning method. 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Chengdu, China, 635–39. IEEE.
  • Yang, G., Q. Ye, and J. Xia. 2022. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond. Information. Fusion 77:29–52. doi:10.1016/j.inffus.2021.07.016.
  • Ye, Q., J. Xia, and G. Yang. 2021. Explainable AI for COVID-19 CT classifiers: An initial comparison study. 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS), Aveiro, Portugal, 521–26. IEEE.
  • Zhang, L., J. Wu, J. Shen, M. Chen, R. Wang, X. Zhou, C. Xu, Q. Yao, and Q. Wu. 2021. SATP-GAN: Self-attention based generative adversarial network for traffic flow prediction. Transportmetrica B: Transport Dynamics 9: 552–68. doi:10.1080/21680566.2021.1916646.
  • Zhang, W., G. Yang, H. Huang, W. Yang, X. Xu, Y. Liu, and X. Lai. 2021. ME‐Net: multi‐encoder net framework for brain tumor segmentation. Int. J. Imaging Syst. Technol 31 :1834–48. doi:10.1002/ima.22571.
  • Zhou, T., S. Canu, P. Vera, and S. Ruan. 2021. Feature-enhanced generation and multi-modality fusion based deep neural network for brain tumor segmentation with missing MR modalities. Neurocomputing 466:102–112. doi:10.1016/j.neucom.2021.09.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.