32
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The estimation of pore size distribution of electroporated MCF-7 cell membrane

, & ORCID Icon
Pages 176-186 | Received 15 Aug 2023, Accepted 05 Jun 2024, Published online: 20 Jun 2024

References

  • Belwalkar, A., E. Grasing, W. Van Geertruyden, Z. Huang, and W. Z. Misiolek. 2008. Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes. J. Memb. Sci. 319:192–98. doi:10.1016/j.memsci.2008.03.044.
  • Campelo, S. N., P. H. Huang, C. R. Buie, and R. V. Davalos. 2023. Recent advancements in electroporation technologies: From bench to clinic. Annu. Rev. Biomed. Eng. 25:77–100. doi:10.1146/annurev-bioeng-110220-023800.
  • Cemazar, M., T. Kotnik, G. Sersa, and D. Miklavcic. 2015. Electroporation for electrochemotherapy and gene therapy. In book: Electromagnetic fields in biology and medicine, chapter: 24, ed. M. S. Markov, 395–413. FL: CRC Press, Editors: Markov MS.
  • Chang, D. C., and T. S. Reese. 1990. Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys. J. 58:1–12. doi:10.1016/S0006-3495(90)82348-1.
  • Chiapperino, M. A., P. Bia, D. Caratelli, J. Gielis, L. Mescia, D.-Č. J, and M. D. 2019. Nonlinear dispersive model of electroporation for irregular nucleated cells. Bioelectromagnetics 40:331–42. doi:10.1002/bem.22197.
  • Chiapperino, M. A., P. Bia, C. M. Lamacchia, and L. Mescia. 2019. Electroporation modelling of irregular nucleated cells including pore radius dynamics. Electronics. 8:1477. doi:10.3390/electronics8121477.
  • Collins, T. J. 2007. ImageJ for microscopy. BioTechniques 43:25–30. doi:10.2144/000112517.
  • Danfelter, M., P. Engstrom, B. R. R. Persson, and L. G. Salford. 1998. Effect of high voltage pulses on survival of Chinese hamster V79 lung fibroblast cells. Bioelectrochem. Bioenergetics. 47:97–101. doi:10.1016/S0302-4598(98)00177-9.
  • Deng, J., K. H. Schoenbach, E. Stephen Buescher, P. S. Hair, P. M. Fox, and S. J. Beebe. 2003. The effects of intense submicrosecond electrical pulses on cells. Biophys. J. 84:2709–14. doi:10.1016/S0006-3495(03)75076-0.
  • Dev, S. B., D. P. Rabussay, G. Widera, and G. A. Hofmann. 2000. Medical applications of electroporation. IEEE Trans. Plasma Sci. 28:206–23. doi:10.1109/27.842905.
  • Dimitrov, D. S. 1995. Electroporation and electrofusion of membranes. In Handbook of Physics of Biological Systems, ed. R. Lipowsky and E. Sackmann, vol. 1, 854–95. Amsterdam, NL: Elsevier.
  • Esmekaya, M. A., H. Kayhan, A. Coskun, and A. G. Canseven. 2016. Effects of cisplatin electrochemotherapy on human neuroblastoma cells. J. Membr. Biol. 249:601–10. doi:10.1007/s00232-016-9891-4.
  • Esmekaya, M. A., H. Kayhan, M. Yagci, A. Coskun, and A. G. Canseven. 2017. Effects of electroporation on tamoxifen delivery in estrogen receptor positive (ER+) human breast carcinoma cells. Cell Biochem. Biophys. 75:103–09. doi:10.1007/s12013-016-0776-z.
  • Faurie, C., M. Golzio, E. Phez, J. Teissie, and M. P. Rols. 2005. Electric field induced cell membrane permeabilization and gene transfer: Theory and experiments. Eng Ineering In Life Sci. 5:179–86. doi:10.1002/elsc.200420068.
  • Fiorentzis, M., H. Kalirai, P. Katopodis, B. Seitz, A. Viestenz, and S. E. Coupland. 2018. Electrochemotherapy with bleomycin and cisplatin enhances cytotoxicity in primary and metastatic uveal melanoma cell lines in vitro. Neoplasma 65:210–15. doi:10.4149/neo_2018_170329N227.
  • Freeman, S. A., M. A. Wang, and J. C. Weaver. 1994. Theory of electroporation of planar bilayer membranes: Predictions of the aqueous area, change in capacitance, and pore-pore separation. Biophys. J. 67:42–56. doi:10.1016/S0006-3495(94)80453-9.
  • Gehl, J. 2003. Electroporation: Theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol. Scand. 177:437–47. doi:10.1046/j.1365-201X.2003.01093.x.
  • Gehl, J., T. Skovsgaard, and L. M. Mir. 1998. Enhancement of cytotoxicity by electropermeabilization: An improved method for screening drugs. Anticancer. Drugs 9:319–26. doi:10.1097/00001813-199804000-00005.
  • González-Sotelo, A., R. Contreras-Bulnes, L. E. Rodríguez-Vilchis, M. de Los Angeles Moyaho-Bernal, E. Rubio-Rosas, B. Teutle-Coyotecatl, and I. Mézquita-Rodrigo. 2022. Morphological and porosity changes in primary enamel surface after an in vitro demineralization model. Microsc. Res. Tech. 85:1956–63. doi:10.1002/jemt.24058.
  • Guo, F., Z. Luo, and J. Xiang. 2023. A coupled model of electroporation and electrodeformation considering dynamic Young’s modulus. Appl. Phys. Lett. 123:213702. doi:10.1063/5.0176469.
  • Gursoy, G., M. A. Esmekaya, and Z. Cicek. 2023. Treatment of cervical cancer by electrochemotherapy with bleomycin, cisplatin, and calcium: An in vitro experimental study. Med. Oncol. 40:52. doi:10.1007/s12032-022-01921-7.
  • He, H., D. C. Chang, and Y. K. Lee. 2007. Using a micro electroporation chip to determine the optimal physical parameters in the uptake of biomolecules in HeLa cells. Bioelectrochem. 70:363–68. doi:10.1016/j.bioelechem.2006.05.008.
  • Ho, S. Y., and G. S. Mittal. 1996. Electroporation of cell membranes: A review. Crit. Rev. Biotechnol. 16:349–62. doi:10.3109/07388559609147426.
  • Ilscande-Geraud, M. R., M. A. D. N. Gas, J. Teissi, N. Gas, and J. Teissié. 1988. Biochim. Biophys. Acta. 939:247–59. doi:10.1016/0005-2736(88)90068-5.
  • Kanduser, M., and D. Miklavcic. 2009. Electroporation in biological cell and tissue: An overview. electrotechnologies for extraction from food plants and biomaterials series, 1–37. NY: Springer Science.
  • Kanduser, M., M. Sentjurc, and D. Miklavcic. 2006. Cell membrane fluidity related to electroporation and resealing. Eur. Biophys. J. 35:196–204. doi:10.1007/s00249-005-0021-y.
  • Kinoshita, K., and T. Y. Tsong. 1977. Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature 268:438–41. doi:10.1038/268438a0.
  • Kotnik, T., and D. Miklavcic. 2006. Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophys. J. 90:480–91. doi:10.1529/biophysj.105.070771.
  • Kotnik, T., G. Pucihar, and D. Miklavcic. 2010. Induced transmembrane voltage and its correlation with electroporation-mediated molecular transport. J. Membr. Biol. 236:3–13. doi:10.1007/s00232-010-9279-9.
  • Krassowska, W., and P. D. Filev. 2007. Modeling electroporation in a single cell. Biophys. J. 92:404–17. doi:10.1529/biophysj.106.094235.
  • Macek-Lebar, A., and D. Miklavcic. 2001. Cell electropermeabilization to small molecules in vitro: Control by pulse parameters. Radiologica Oncol. 35:193–202.
  • Marszalek, P., D. S. Liu, and T. Y. Tsong. 1990. Schwan equation and transmembrane potential induced by alternating electric field. Biophys. J. 58:1053–58. doi:10.1016/S0006-3495(90)82447-4.
  • Meaking, W. S., J. Edgerton, C. W. Wharton, and R. A. Meldrum. 1995. Electroporation-induced damage in mammalian cell DNA. Biochim. Biophys. Acta (BBA) - Gene Structure and Expression 1264:357–62. doi:10.1016/0167-4781(95)00177-8.
  • Mehier-Humbert, S., T. Bettinger, F. Yan, and R. H. Guy. 2005. Plasma membrane poration induced by ultrasound exposure: Implication for drug delivery. J. Control Release 104:213–22. doi:10.1016/j.jconrel.2005.01.007.
  • Michel, O., J. Kulbacka, J. Saczko, J. Mączyńska, P. Błasiak, J. Rossowska, and A. Rzechonek. 2018. Electroporation with cisplatin against metastatic pancreatic cancer: In Vitro study on human primary cell culture. Biomed. Res. Int. 2018:1–12. March 19, 2018. doi:10.1155/2018/7364539.
  • Miklavcic, D., D. Šemrov, H. Mekid, and L. M. Mir. 2000. A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochimica et Biophysica Acta. 1532:73–83. doi:10.1016/S0304-4165(00)00101-X.
  • Mir, L. M. 2006. Bases and rationale of the electrochemotherapy. Eur. J.Cancer. Supplements 4:38–44. doi:10.1016/j.ejcsup.2006.08.005.
  • Muralidharan, A., and P. E. Boukany. 2023. Electrotransfer for nucleic acid and protein delivery. Trends Biotechnol. 14:S0167–7799(23)00331–1.
  • Muralidharan, A., L. Rems, M. T. Kreutzer, and P. E. Boukany. 2021. Actin networks regulate the cell membrane permeability during electroporation. Biochim. Biophys. Acta. Biomembr. 1863:183468. doi:10.1016/j.bbamem.2020.183468.
  • Neumann, E., S. Kakorin, and K. Tœnsing. 1999. Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem. And Bioenergetics 48:3–16. doi:10.1016/S0302-4598(99)00008-2.
  • Neu, J. C., K. C. Smith, and W. Krassowska. 2003. Electrical energy required to form large conducting pores. Bioelectrochemistry 60:107–14. doi:10.1016/S1567-5394(03)00051-3.
  • Pavlin, M., N. Pavselj, and D. Miklavcic. 2002. Dependence of induced transmembrane potential on cell density, arrangement, and cell position inside a cell system. IEEE Transact. Obbiomedical Eng. 49:605–12. doi:10.1109/TBME.2002.1001975.
  • Pucihar, G., T. Kotnik, M. D, and J. Teissié. 2008. Kinetics of transmembrane transport of small molecules into electropermeabilized cells. Biophys. J. 95:2837–48. doi:10.1529/biophysj.108.135541.
  • Rols, M. P. 2006. Electropermeabilization, a physical method for the delivery of therapeutic molecules into cells. Biochimica et Biophysica Acta. (BBA) - Biomembranes 1758:423–28. doi:10.1016/j.bbamem.2006.01.005.
  • Rols, M.-P., and J. Teissie. 1989. Ionic-strength modulation of electrically induced permeabilization and associated fusion of mammalian cells. Eur. J. Biochem. 179:109. doi:10.1111/j.1432-1033.1989.tb14527.x.
  • Rols, M. P., and J. Teissie. 1998. Electropermeabilization of mammalian cells to macromolecules: Control by pulse duration. Biophys. J. 75:1415–23. doi:10.1016/S0006-3495(98)74060-3.
  • Saulis, G. 1999a. Cell electroporation: Estimation of the number of pores and their sizes. Biomed. Sci. Instrum. 35:291–96.
  • Saulis, G. 1999b. Kinetics of pore disappearance in a cell after electroporation. Biomed. Sci. Instrum. 35:409–14.
  • Saulis, G., and R. Suale. 2012. Size of the pores created by an electric pulse: Microsecond vs millisecond pulses. Biochim. Biophys. Acta 1818:3032–39. doi:10.1016/j.bbamem.2012.06.018.
  • Saulis, G., M. S. Venslauskas, and J. Naktinis. 1991. Kinetics of pore resealing in cell membranes after electroporation. J. Electroanal. Chem. 321:1–13. doi:10.1016/0022-0728(91)85564-6.
  • Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, et al. 2012. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9:676–82. doi:10.1038/nmeth.2019.
  • Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9:671–75. doi:10.1038/nmeth.2089.
  • Scuderi, M., D.-Č. J, C. Amaral da Silva, A. Muralidharan, P. E. Boukany, and L. Rems. 2022. Models of electroporation and the associated transmembrane molecular transport should be revisited. Bioelectrochemistry 147:108216. doi:10.1016/j.bioelechem.2022.108216.
  • Sel, D., A. Macek-Lebar, and D. Miklavcic. 2007. Feasibility of employing model-based optimization of pulse amplitude and electrode distance for effective tumor electropermeabilization. IEEE Transactions On Biomed. Eng. 54:773–81. doi:10.1109/TBME.2006.889196.
  • Sengel, J. T., and M. I. Wallace. 2017. Measuring the potential energy barrier to lipid bilayer electroporation. Philosophical Trans. Royal Soc. B: Biol. Sci. 372:20160227. doi:10.1098/rstb.2016.0227.
  • Shil, P., S. Bidaye, and P. B. Vidyasagar. 2008. Analyzing the effects of surface distribution of pores in cell electroporation for a cell membrane containing cholesterol. J. Phys. D: Appl. Phys. 41:551. doi:10.1088/0022-3727/41/5/055502.
  • Sowers, A. E., and M. R. Lieber. 1986. Electropore diameters, lifetimes, numbers, and locations in individual erythrocyte ghosts. FEBS Lett. 205:179–84. doi:10.1016/0014-5793(86)80893-6.
  • Subhra, T., P. C., Wand, F. G., Tseng. 2013. Electroporation based drug delivery and its applications. Adv. Micro/Nano Electromechanical Syst. And Fabrication Technologies, InTech. 1:1–38.
  • Subramaniam, R., M. P. Mani, and S. K. Jaganathan. 2018. Fabrication and testing of electrospun polyurethane blended with chitosan nanoparticles for vascular graft applications. Cardiovasc. Eng. Technol. 9:503–13. doi:10.1007/s13239-018-0357-y.
  • Sustarsic, M., A. Plochowietz, L. Aigrain, Y. Yuzenkova, N. Zenkin, and A. Kapanidis. 2014. Optimized delivery of fluorescently labeled proteins in live bacteria using electroporation. Histochem. Cell Biol. 142:113–24. doi:10.1007/s00418-014-1213-2.
  • Tang, S. Y., W. Zhang, R. Soffe, S. Nahavandi, R. Shukla, and K. Khoshmanesh. 2014. High resolution scanning electron microscopy of cells using dielectrophoresis. PLOS ONE 9:e104109. doi:10.1371/journal.pone.0104109.
  • Teissie, J., N. Eynard, B. Gabriel, and M. P. Rols. 1999. Electropermeabilization of cell membranes. Adv. Drug Deliv. Rev. 35:3–19. doi:10.1016/S0169-409X(98)00060-X.
  • Teissie, J., N. Eynard, M. C. Vernhes, A. Benichou, V. Ganeva, B. Galutzov, and P. A. Cabanes. 2002. Recent biotechnological developments of electropulsation: A prospective review. Bioelectrochemistry 55:107–12. doi:10.1016/S1567-5394(01)00138-4.
  • Tieleman, P. 2004. The molecular basis of electroporation. BMC Biochem. 5:10. doi:10.1186/1471-2091-5-10.
  • Tien, J., U. Ghani, Y. W. Dance, A. J. Seibel, K. MÇ, K. L. Ekinci, and C. M. Nelson. 2020. Matrix pore size governs escape of human breast cancer cells from a microtumor to an empty cavity. İScience 23:101673, 14. doi:10.1016/j.isci.2020.101673.
  • Tsong, T. Y. 1989. Electroporation of cell membranes. In Electroporation and electrofusion in cell biology, ed. E. Neumann, A. E. Sowers, and C. A. Jordan, 149–163. Boston, MA: Springer.
  • Weaver, J. C., and Y. A. Chizmadzhev. 1996. Theory of electroporation: A review. Bioelectrochem. Bioenerg. 41:135–60. doi:10.1016/S0302-4598(96)05062-3.
  • Yadollahpour, A., and Z. Rezaee. 2012. Electroporation as a new cancer treatment technique: A review on the mechanisms of action. Biomed. Pharmacol. J. 7:53–62. doi:10.13005/bpj/452.
  • Yang, L., K. Tanabe, T. Miura, M. Yoshinari, S. Takemoto, S. Shintani, and M. Kasahara. 2017. Influence of lyophilization factors and gelatin concentration on pore structures of atelocollagen/gelatin sponge biomaterial. Dent Mater J. 36:429–37. doi:10.4012/dmj.2016-242.
  • Yarmush, M., A. Golberg, G. K. Sersa, M. D. T, and D. Miklavčič. 2014. Electroporation-based technologies for medicine: Principles, applications, and challenges. Annu. Rev. Biomed. Eng. 16:295–320. doi:10.1146/annurev-bioeng-071813-104622.
  • You, Y., B.-M. Min, S. J. Lee, T. S. Lee, and W. H. Park. 2005. In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide- co -glycolide). J. Appl. Polym. Sci. 95:193–200. doi:10.1002/app.21116.
  • Zhao, Y. Z., Y. K. Luo, C. T. Lu, J. F. Xu, J. Tang, M. Zhang, Y. Zhang, and H. D. Liang. 2008. Phospholipids-based microbubbles sonoporation pore size and reseal of cell membrane cultured in vitro. J. Drug Target. 16:18–25. doi:10.1080/10611860701637792.
  • Zhou, Y., R. E. Kumon, J. Cui, and C. X. Deng. 2009. The size of sonoporation pores on the cell membrane. Ultrasound Med. Biol. 35:1756–60. doi:10.1016/j.ultrasmedbio.2009.05.012.
  • Zimmerman, U. 1982. Electric field-mediated fusion and related electricalphenomena. Biochim. Biophys. Acta 694:227–77. doi:10.1016/0304-4157(82)90007-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.