399
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Finite Element Modeling of the Indentation and Scratch Response of Epoxy/Silica Nanocomposites

, , , &
Pages 802-809 | Received 05 Dec 2011, Accepted 11 May 2012, Published online: 07 Jul 2014

References

  • Z.Z. Wang, P. Gu, Z. Zhang, L. Gu, and Y.Z. Xu, Mechanical and tribological behavior of epoxy/silica nanocomposites at the micro/nano scale, Tribol. Lett., vol. 42, pp. 185–191, 2011.
  • B. Wetzel, F. Haupert, and M.Q. Zhang, Epoxy nanocomposites with high mechanical and tribological performance, Compos. Sci. Technol., vol. 63, pp. 2055–2067, 2003.
  • M.Z. Rong, M.Q. Zhang, H. Liu, and M. Zeng, Microstructure and tribological behavior of polymeric nanocomposites, Ind. Lubr. Tribol., vol. 53, pp. 72–77, 2001.
  • Y.J. Liu and X.L. Chen, Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element, Mech. Mater., vol. 35, pp. 69–81, 2003.
  • H. Pelletier, C. Gauthier, and R. Schirrer, Strain and stress fields during scratch tests on amorphous polymers: Influence of the local friction, Tribol. Lett., vol. 32, pp. 109–116, 2008.
  • H. Jiang, G.T. Lim, J.N. Reddy, J.D. Whitcomb, and H.-J. Sue, Finite element method parametric study on scratch behavior of polymers, J. Polym. Sci., B: Polym. Phys., vol. 45, pp. 1435–1447, 2007.
  • A. Wymyslowski, L. Dowhan, O. Wittler, R. Mrossko, and R. Dudek, Application of nanoindentation technique to extraction of thin films properties through experimental and numerical analysis, Mater. Sci., vol. 28, pp. 655–662, 2010.
  • ABAQUS Inc., ABAQUS User's Manual Version 6.10, Dassault Systèmes Simulia Corp., Providence, RI, 2010.
  • N. Xu and B.Y. Zong, Stress in particulate reinforcements and overall stress response on aluminum alloy matrix composites during straining by analytical and numerical modeling, Comput. Mater. Sci., vol. 43, pp. 1094–1100, 2008.
  • X.L. Chen and Y.J. Liu, Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites, Comput. Mater. Sci., vol. 29, pp. 1–11, 2004.
  • I. Tirtom, M. Guden, and H. Yilidz, Simulation of the strain rate sensitive flow behavior of SiC-particulate reinforced aluminum metal matrix composites, Comput. Mater. Sci., vol. 42, pp. 570–578, 2008.
  • Y.S. Suh, S.P. Joshi, and K.T. Ramesh, An enhanced continuum model for size-dependent strengthening and failure of particle-reinforced composites, Acta. Mater., vol. 57, pp. 5848–5861, 2009.
  • N. Chawla, D.R.P. Singh, and Y.L. Shen, Indentation mechanics and fracture behavior of metal/ceramic nanolaminate composites, J. Mater. Sci., vol. 43, pp. 4383–4390, 2008.
  • R. Ekici, M.K. Apalak, and M. Yildirim, Effects of random particle dispersion and size on the indentation behavior of SiC particle reinforced metal matrix composites, Mater. Des., vol. 31, pp. 2818–2833, 2010.
  • P. Vena, D. Gastaldi, and R. Contro, Determination of the effective elastic-plastic response of metal-ceramic composites, Int. J. Plast., vol. 24, pp. 483–508, 2008.
  • J.R. Gregory and S.M. Spearing, Nanoindentation of neat and in situ polymers in polymer-matrix composites, Compos. Sci. Technol., vol. 65, pp. 595–607, 2005.
  • N. Chawla, R.S. Sidhu, and V.V. Ganesh, Three-dimensional visualization and microstructure-based modeling of deformation in particle-reinforced composites, Acta. Mater., vol. 54, pp. 1541–1548, 2006.
  • N. Chawla, W. Ganesh, and B. Wunsch, Three-dimensional (3D) microstructure visualization and finite element modeling of the mechanical behavior of SiC particle reinforced aluminum composites, Scripta Mater., vol. 51, pp. 161–165, 2004.
  • L. Figiel and C.P. Buckley, Elastic constants for an intercalated layered-silicate/polymer nanocomposite using the effective particle concept—A parametric study using numerical and analytical continuum approaches, Comput. Mater. Sci., vol. 44, pp. 1332–1343, 2009.
  • S. Kari, H. Berger, and R. Rodriguez-Ramos, Computational evaluation of effective material properties of composites reinforced by randomly distributed spherical particles, Compos. Struct., vol. 77, pp. 223–231, 2007.
  • J.L. Bucaille and E. Felder, Identification of the viscoplastic behavior of a polycarbonate based on experiments and numerical modeling of the nano-indentation test, J. Mater. Sci., vol. 37, pp. 3999–4011, 2002.
  • J.L. Bucaille, E. Felder, and G. Hochstetter, Experimental and three-dimensional finite element study of scratch test of polymers at large deformations, J. Tribol-T. ASME, vol. 126, pp. 372–379, 2004.
  • H. Pelletier, J. Krier, A. Cornet, and P. Mille, Limits of using bilinear stress–strain curve for finite element modeling of nanoindentation response on bulk materials, Thin Solid Films, vol. 379, pp. 147–155, 2000.
  • A. Chatterjee, A.A. Polycarpou, J.R. Abelson, and P. Bellon, Nanoscratch study of hard HfB2 thin films using experimental and finite element techniques, Wear, vol. 268, pp. 677–685, 2010.
  • G. Kermouche, N. Aleksy, J.L. Loubet, and J.M. Bergheau, Finite element modeling of the scratch response of a coated time-dependent solid, Wear, vol. 267, pp. 1945–1953, 2009.
  • M.N. Yuan, Y.Q. Yang, and H.J. Luo, Evaluation of interfacial properties in SiC fiber reinforced titanium matrix composites using an improved finite element model, Mater. Charact., vol. 59, pp. 1648–1689, 2008.
  • F. Wredenberg and P.L. Larsson, On the effect of substrate deformation at scratching of soft thin film composites, Int. J. Mech. Sci., vol. 52, pp. 1008–1014, 2010.
  • W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res., vol. 7, pp. 1564–1583, 1992.
  • S. Lafaye, C. Gauthier, and R. Schirrrer, Analysis of the apparent friction of polymeric surfaces, J. Mater. Sci., vol. 41, pp. 6441–6452, 2006.
  • H. Pelletier, C. Gauthier, and R. Schirrer, Wear simulation of polymer using multiscratch test procedure, Tribol. Lett., vol. 37, pp. 507–515, 2010.
  • C.J. Ouyang, M.S. Huang, and Z.H. Li, Circular nano-indentation in particle-reinforced metal matrix composites: Simply uniformly distributed particles lead to complex nano-indentation response, Comput. Mater. Sci., vol. 47, pp. 940–950, 2010.
  • P. Zhang and F.G. Li, microstructure-based simulation of plastic deformation behavior of SiC particle reinforced Al matrix composites, Chin. J. Aeronaut., vol. 22, pp. 663–669, 2009.
  • M. Mondali, A. Abedian, and S. Adibnazari, FEM study of the second stage creep behavior of Al6061/SiC metal matrix composite, Comput. Mater. Sci., vol. 34, pp. 140–150, 2005.
  • Z.H. Jiang, G.Y. Li, and H.S. Lian, Elastic-plastic stress transfer in short fibre-reinforced metal-matrix composites, Compos. Sci. Technol., vol. 64, pp. 1661–1670, 2004.
  • M.R. Rosenberger, E. Forlerer, and C.E. Schvezov, Modeling the micro-indentation of metal matrix composites, Mater. Sci. Eng. A, vol. 463, pp. 275–283, 2007.
  • N. Chawla and Y.L. Shen, Mechanical behavior of particle reinforced metal matrix composites, Adv. Eng. Mater., vol. 3, pp. 357–370, 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.