1,138
Views
43
CrossRef citations to date
0
Altmetric
Original Article

Polymer nanocomposites for structural applications: Recent trends and new perspectives

, &
Pages 1263-1277 | Received 10 Feb 2015, Accepted 29 Apr 2015, Published online: 30 Mar 2016

References

  • Z.S. Metaxa, J.-W.T. Seo, M.S. Konsta-Gdoutos, M.C. Hersam, and S.P. Shah, Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials, Cem. Concr. Compos., vol. 34, no. 5, pp. 612–617, 2012.
  • I. Rhee and Y.-S. Roh, Properties of normal-strength concrete and mortar with multi-walled carbon nanotubes, Mag. Concr. Res., vol. 65, no. 16, pp. 951–961, 2013.
  • M. Oltulu and R. Şahin, Pore structure analysis of hardened cement mortars containing silica fume and different nano-powders, Constr. Build. Mater., vol. 53, pp. 658–664, 2014.
  • A.M. Rashad, A comprehensive overview about the effect of nano-SiO on some properties of traditional cementitious materials and alkali-activated fly ash, Constr. Build. Mater., vol. 52, pp. 437–464, 2014.
  • D.R. Paul and L.M. Robeson, Polymer nanotechnology: Nanocomposites, Polymer, vol. 49, no. 15, pp. 3187–3204, 2008.
  • P. Camargo, K. Satyanarayana, and F. Wypych, Nanocomposites: Synthesis, structure, properties and new application opportunities, Mater. Res., vol. 12, no. 1, pp. 1–39, 2009.
  • N. Hu, Z. Masuda, C. Yan, G. Yamamoto, H. Fukunaga, and T. Hashida, The electrical properties of polymer nanocomposites with carbon nanotube fillers, Nanotechnology, vol. 19, no. 21, p. 10, 2008.
  • E. Soliman, U.F. Kandil, and M. Reda Taha, Limiting shear creep of epoxy adhesive at the FRP–concrete interface using multi-walled carbon nanotubes, Int. J. Adhes. Adhes., vol. 33, pp. 36–44, 2012.
  • F. Hussain, M. Hojjati, M. Okamoto, and R.E. Gorga, Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview, J. Compos. Mater., vol. 40, no. 17, pp. 1511–1575, 2006.
  • D. Feldman, Polymer nanocomposites in building, construction, J. Macromol. Sci., Part A, vol. 51, no. 3, pp. 203–209, 2014.
  • E.P. Giannelis, Polymer layered silicate nanocomposites, Adv. Mater., vol. 8, no. 1, pp. 29–35, 1996.
  • A. Okada and A. Usuki, The chemistry of polymer-clay hybrids, Mater. Sci. Eng., C, vol. 3, no. 2, pp. 109–115, 1995.
  • R.-S.N. Amiri, T. Tirri, and C.-E. Wilen, Flame retardant polyurethane nanocomposite: Study of clay dispersion and its synergistic effect with dolomite, J. Appl. Polym. Sci., vol. 129, no. 4, pp. 1678–1685, 2013.
  • B.-W. Jo, S.-K. Park, and D.-K. Kim, Mechanical properties of nano-MMT reinforced polymer composite and polymer concrete, Constr. Build. Mater., vol. 22, no. 1, pp. 14–20, 2008.
  • T.M. Pique and A. Vazquez, Control of hydration rate of polymer modified cements by the addition of organically modified montmorillonites, Cem. Concr. Compos., vol. 37, pp. 54–60, 2013.
  • R.S.C. Woo, H. Zhu, M.M.K. Chow, C.K.Y. Leung, and J.-K. Kim, Barrier performance of silane–clay nanocomposite coatings on concrete structure, Compos. Sci. Technol., vol. 68, no. 14, pp. 2828–2836, 2008.
  • H. Zhang, J. Yu, and S. Wu, Effect of montmorillonite organic modification on ultraviolet aging properties of SBS modified bitumen, Constr. Build. Mater., vol. 27, no. 1, pp. 553–559, 2012.
  • F. Dabrowski, S. Bourbigot, R. Delobel, and M. Le Bras, Kinetic modelling of the thermal degradation of polyamide-6 nanocomposite, Eur. Polym. J., vol. 36, no. 2, pp. 273–284, 2000.
  • J.Y. Lee, A.R.C. Baljon, R.F. Loring, and A.Z. Panagiotopoulos, Simulation of polymer melt intercalation in layered nanocomposites, J. Chem. Phys., vol. 109, no. 23, pp. 10321–10330, 1998.
  • S. Sinha Ray and M. Okamoto, Polymer/layered silicate nanocomposites: A review from preparation to processing, Prog. Polym. Sci., vol. 28, no. 11, pp. 1539–1641, 2003.
  • R.A. Vaia, K.D. Jandt, E.J. Kramer, and E.P. Giannelis, Kinetics of polymer melt intercalation, Macromolecules, vol. 28, no. 24, pp. 8080–8085, 1995.
  • M.M. Shokrieh, A.R. Kefayati, and M. Chitsazzadeh, Fabrication and mechanical properties of clay/epoxy nanocomposite and its polymer concrete, Mater. Des., vol. 40, pp. 443–452, 2012.
  • D. Wang, B.N. Jang, S. Su, J. Zhang, X.X. Zheng, G. Chigwada, D.D. Jiang, and C. Wilkie, Fire Retardancy of Polystyrene—Hectorite Nanocomposites. In: Fire Retardancy of Polymers: New Applications of Mineral Fillers, M. Le Bras, S. Bourbigot, S. Duquesne, C. Jama, C. Wilkie, Eds., Royal Society of Chemistry, Cambridge, UK, pp. 126–138, 2005.
  • A.S. Zerda and A.J. Lesser, Intercalated clay nanocomposites: Morphology, mechanics, and fracture behavior, J. Polym. Sci., vol. 39, no. 11, pp. 1137–1146, 2001.
  • A.I. Alateyah, H.N. Dhakal, and Z.Y. Zhang, The effect of processing parameters of the vinyl ester matrix nanocomposites based on layered silicate on the level of exfoliation, Int. J. Chem. Mater. Sci. Eng., vol. 7, no. 12, pp. 85–91, 2013.
  • P.C. LeBaron, Z. Wang, and T.J. Pinnavaia, Polymer-layered silicate nanocomposites: An overview, Appl. Clay Sci., vol. 15, no. 1–2, pp. 11–29, 1999.
  • J.M. Barbas, A.V. Machado, and J.A. Covas, In-line near-infrared spectroscopy for the characterization of dispersion in polymer-clay nanocomposites, Polym. Test., vol. 31, no. 4, pp. 527–536, 2012.
  • J.M. Barbas, A.V. Machado, and J.A. Covas, Evolution of dispersion along the extruder during the manufacture of polymer–organoclay nanocomposites, Chem. Eng. Sci., vol. 98, pp. 77–87, 2013.
  • J.W. Gilman, C.L. Jackson, A.B. Morgan, R.H. Harris, Jr., E. Manias, E.P. Gianneli, M. Wuthenow, D. Hilton, and S.H. Phillips, Flammability properties of polymer−layered-silicate nanocomposites, polypropylene and polystyrene nanocomposites, Chem. Mater., vol. 12, no. 7, pp. 1866–1873, 2000.
  • T.-D. Ngo, M.-T. Ton-That, S.V. Hoa, and K.C. Cole, Effect of temperature, duration and speed of pre-mixing on the dispersion of clay/epoxy nanocomposites, Compos. Sci. Technol., vol. 69, no. 11–12, pp. 1831–1840, 2009.
  • S. Wang, Y. Hu, Z. Li, Z. Wang, Y. Zhuang, Z. Chen, and W. Fan, Flammability and phase-transition studies of nylon 6/montmorillonite nanocomposites, Colloid Polym. Sci., vol. 281, no. 10, pp. 951–956, 2003.
  • D.C. Prajapati, P.G. Singh, M. Gindhar, and A. Kumar, Review on polymer nanocomposites by using various resins and nanoclays and their applications, IJBSTR Rev. Paper, vol. 1, no. 6, pp. 29–36, 2013.
  • P. Scarfato, L. Di Maio, M.L. Fariello, P. Russo, and L. Incarnato, Preparation and evaluation of polymer/clay nanocomposite surface treatments for concrete durability enhancement, Cem. Concr. Compos., vol. 34, no. 3, pp. 297–305, 2012.
  • L. Chen, D. Rende, L.S. Schadler, and R. Ozisik, Polymer nanocomposite foams, J. Mater. Chem. A, vol. 1, no. 12, pp. 3837–3850, 2013.
  • X. Cao, L.J. Lee, T. Widya, and C. Macosko, Polyurethane/clay nanocomposites foams: Processing, structure and properties, Polymer, vol. 46, no. 3, pp. 775–783, 2005.
  • M.S. Sureshkumar, S. Filippi, G. Polacco, I. Kazatchkov, J. Stastna, and L. Zanzotto, Internal structure and linear viscoelastic properties of EVA/asphalt nanocomposites, Eur. Polym. J., vol. 46, no. 4, pp. 621–633, 2010.
  • H. Yao, Z. You, L. Li, X. Shi, S.W. Goh, J. Mills-Beale, and D. Wingard, Performance of asphalt binder blended with non-modified and polymer-modified nanoclay, Constr. Build. Mater., vol. 35, pp. 159–170, 2012.
  • V.N. Popov, Carbon nanotubes: Properties and application, Mater. Sci. Eng., R., vol. 43, no. 3, pp. 61–102, 2004.
  • N. Silvestre, B. Faria, and J.N. Canongia Lopes, A molecular dynamics study on the thickness and post-critical strength of carbon nanotubes, Compos. Struct., vol. 94, no. 4, pp. 1352–1358, 2012.
  • S.B. Sinnott and R. Andrews, Carbon nanotubes: Synthesis, properties, and applications, Crit. Rev. Solid State Mater. Sci., vol. 26, no. 3, pp. 145–249, 2001.
  • S. Yu, M.N. Tong, and G. Critchlow, Use of carbon nanotubes reinforced epoxy as adhesives to join aluminum plates, Mater. Des., vol. 31, pp. S126–S129, 2010.
  • C.-W. Lam, J.T. James, R. McCluskey, S. Arepalli, and R.L. Hunter, A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks, Crit. Rev. Toxicol., vol. 36, no. 3, pp. 189–217, 2006.
  • E.M. Soliman, U.F. Kandil, and M.M.R. Taha, The significance of carbon nanotubes on styrene butadiene rubber (SBR) and SBR modified mortar, Mater. Struct., vol. 45, no. 6, pp. 803–816, 2012.
  • A. Chaipanich, T. Nochaiya, W. Wongkeo, and P. Torkittikul, Compressive strength and microstructure of carbon nanotubes–fly ash cement composites, Mater. Sci. Eng. A, vol. 527, no. 4–5, pp. 1063–1067, 2010.
  • T.C. Rousakis, K.B. Kouravelou, and T.K. Karachalios, Effects of carbon nanotube enrichment of epoxy resins on hybrid FRP–FR confinement of concrete, Composites Part B, vol. 57, pp. 210–218, 2014.
  • M.-H. Kang, J.-H. Choi, and J.-H. Kweon, Fatigue life evaluation and crack detection of the adhesive joint with carbon nanotubes, Compos. Struct., vol. 108, pp. 417–422, 2014.
  • J. Sebastian, N. Schehl, M. Bouchard, M. Boehle, L. Li, A. Lagounov, and K. Lafdi, Health monitoring of structural composites with embedded carbon nanotube coated glass fiber sensors, Carbon, vol. 66, pp. 191–200, 2014.
  • R. Zhang, H. Deng, R. Valenca, J. Jin, Q. Fu, E. Bilotti, and T. Peijs, Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading, Compos. Sci. Technol., vol. 74, pp. 1–5, 2013.
  • P. Ciselli, L. Lu, J.J.C. Busfield, and T. Peijs, Piezoresistive polymer composites based on EPDM and MWNTs for strain sensing applications, e-Polymers, vol. 10, no. 1, pp. 125–137, 2013.
  • O. Breuer and U. Sundararaj, Big returns from small fibers: A review of polymer/carbon nanotube composites, Polym. Compos., vol. 25, no. 6, pp. 630–645, 2004.
  • M. Moniruzzaman and K.I. Winey, Polymer nanocomposites containing carbon nanotubes, Macromolecules, vol. 39, no. 16, pp. 5194–5205, 2006.
  • V. Dhand, K.Y. Rhee, H. Ju Kim, and D. Ho Jung, A comprehensive review of graphene nanocomposites: Research status and trends, J. Nanomater., vol. 2013, p. 13, 2013.
  • J. Ma, Q. Meng, I. Zaman, S. Zhu, A. Michelmore, N. Kawashima, C.H. Wang, and H.-C. Kuan, Development of polymer composites using modified, high-structural integrity graphene platelets, Compos. Sci. Technol., vol. 91, pp. 82–90, 2014.
  • M.A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z.-Z. Yu, and N. Koratkar, Fracture and fatigue in graphene nanocomposites, Small, vol. 6, no. 2, pp. 179–183, 2010.
  • F. Babak, H. Abolfazl, R. Alimorad, and G. Parviz, Preparation and mechanical properties of graphene oxide: Cement nanocomposites, Sci. World J., vol. 2014, p. e276323, 2014.
  • H. Kim, A.A. Abdala, and C.W. Macosko, Graphene/polymer nanocomposites, Macromolecules, vol. 43, no. 16, pp. 6515–6530, 2010.
  • M. Berra, F. Carassiti, T. Mangialardi, A.E. Paolini, and M. Sebastiani, Effects of nanosilica addition on workability and compressive strength of Portland cement pastes, Constr. Build. Mater., vol. 35, pp. 666–675, 2012.
  • B.-W. Jo, C.-H. Kim, G. Tae, and J.-B. Park, Characteristics of cement mortar with nano-SiO particles, Constr. Build. Mater., vol. 21, no. 6, pp. 1351–1355, 2007.
  • G. Quercia and H.J.H. Brouwers, Application of nanosilica (nS) in concrete mixtures, 8th fib International PhD Symposium in Civil Engineering, June 20–23, Kgs, Lyngby, Denmark, 2010.
  • J.Z. Chong, N.M. Sutan, and I. Yakub, Characterization of early pozzolanic reaction of calcium hydroxide and calcium silicate hydrate for nanosilica modified cement paste, UNIMAS e-Journal Civil Eng., vol. 4, no. 3, pp. 6–10, 2012.
  • M.R. Kessler and W.K. Goertzen, Polymer nanocomposites for infrastructure rehabilitation. In: Nanotechnology in Construction 3, Z. Bittnar, P.J.M. Bartos, J. Němeček, V. Šmilauer, and J. Zeman, Eds., Springer, Berlin Heidelberg, pp. 241–250, 2009.
  • C.-F. Ou and M.-C. Shiu, Epoxy composites reinforced by different size silica nanoparticles, J. Appl. Polym. Sci., vol. 115, no. 5, pp. 2648–2653, 2010.
  • H.Y. Wang, Y.L. Bai, S. Liu, J.L. Wu, and C.P. Wong, Combined effects of silica filler and its interface in epoxy resin, Acta Mater., vol. 50, no. 17, pp. 4369–4377, 2002.
  • L. Wang, K. Wang, L. Chen, Y. Zhang, and C. He, Preparation, morphology and thermal/mechanical properties of epoxy/nanoclay composite, Composites Part A, vol. 37, no. 11, pp. 1890–1896, 2006.
  • A. Allahverdi, M. Ehsani, H. Janpour, and S. Ahmadi, The effect of nanosilica on mechanical, thermal and morphological properties of epoxy coating, Prog. Org. Coat., vol. 75, no. 4, pp. 543–548, 2012.
  • C. Chen, R.S. Justice, D.W. Schaefer, and J.W. Baur, Highly dispersed nanosilica–epoxy resins with enhanced mechanical properties, Polymer, vol. 49, no. 17, pp. 3805–3815, 2008.
  • Y.L. Liang and R.A. Pearson, Toughening mechanisms in epoxy–silica nanocomposites (ESNs), Polymer, vol. 50, no. 20, pp. 4895–4905, 2009.
  • M. Zamanian, M. Mortezaei, B. Salehnia, and J.E. Jam, Fracture toughness of epoxy polymer modified with nanosilica particles: Particle size effect, Eng. Fract. Mech., vol. 97, pp. 193–206, 2013.
  • E. Bakhshandeh, A. Jannesari, Z. Ranjbar, S. Sobahni, and M.R. Saeb, Anti-corrosion hybrid coatings based on epoxy–silica nano-composites: Toward relationship between the morphology and EIS data, Prog. Org. Coat., vol. 77, no. 7, pp. 1169–1183, 2014.
  • I. Javni, W. Zhang, V. Karajkov, Z.S. Petrovic, and V. Divjakovic, Effect of nano-and micro-silica fillers on polyurethane foam properties, J. Cell. Plast., vol. 38, no. 3, pp. 229–239, 2002.
  • J. Lee, G.-H. Kim, and C.-S. Ha, Sound absorption properties of polyurethane/nano-silica nanocomposite foams, J. Appl. Polym. Sci., vol. 123, no. 4, pp. 2384–2390, 2012.
  • A.M. Torró-Palau, J.C. Fernández-García, A. César Orgilés-Barceló, and J.M. Martín-Martínez, Characterization of polyurethanes containing different silicas, Int. J. Adhes. Adhes., vol. 21, no. 1, pp. 1–9, 2001.
  • S.L. Abd-El Messieh and N.N. Rozik, Dielectric and morphological studies on polyester/nanosilica fume composites, J. Appl. Polym. Sci., vol. 122, no. 1, pp. 714–721, 2011.
  • M. Conradi, A. Kocijan, D. Kek-Merl, M. Zorko, and I. Verpoest, Mechanical and anticorrosion properties of nanosilica-filled epoxy-resin composite coatings, Appl. Surf. Sci., vol. 292, pp. 432–437, 2014.
  • X. Shi, T.A. Nguyen, Z. Suo, Y. Liu, and R. Avci, Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating, Surf. Coat. Technol., vol. 204, no. 3, pp. 237–245, 2009.
  • M.M.A. Nikje, A.B. Garmarudi, M. Haghshenas, and Z. Mazaheri, Improving the performance of heat insulation polyurethane foams by silica nanoparticles, Nanotechnol. Constr., vol. 3, pp. 149–154, 2009.
  • Q. Meng, C.H. Wang, N. Saber, H.-C. Kuan, J. Dai, K. Friedrich, and J. Ma, Nanosilica-toughened polymer adhesives, Mater. Des., vol. 61, pp. 75–86, 2014.
  • A. Pourjavadi, S.M. Fakoorpoor, P. Hosseini, and A. Khaloo, Interactions between superabsorbent polymers and cement-based composites incorporating colloidal silica nanoparticles, Cem. Concr. Compos., vol. 37, pp. 196–204, 2013.
  • Y.Z. Ketek Lahijania, M. Mohseni, and S. Bastani, Characterization of mechanical behavior of UV cured urethane acrylate nanocomposite films loaded with silane treated nanosilica by the aid of nanoindentation and nanoscratch experiments, Tribol. Int., vol. 69, pp. 10–18, 2014.
  • A.G. Agrios and P. Pichat, State of the art and perspectives on materials and applications of photocatalysis over TiO, J. Appl. Electrochem., vol. 35, no. 7–8, pp. 655–663, 2005.
  • J. Chen, S. Kou, and C. Poon, Hydration and properties of nano-TiO blended cement composites, Cem. Concr. Compos., vol. 34, no. 5, pp. 642–649, 2012.
  • K. Hashimoto, H. Irie, and A. Fujishima, TiO2 photocatalysis: A historical overview and future prospects, Jpn. J. Appl. Phys., vol. 44, no. 12, pp. 8269–8285, 2005.
  • F. Sanchez and K. Sobolev, Nanotechnology in concrete—A review, Constr. Build. Mater., vol. 24, no. 11, pp. 2060–2071, 2010.
  • L. Pinho and M.J. Mosquera, Photocatalytic activity of TiO2–SiO2 nanocomposites applied to buildings: Influence of particle size and loading, Appl. Catal., B, vol. 134–135, pp. 205–221, 2013.
  • G.M. Revel, M. Martarelli, M.Á. Bengochea, A. Gozalbo, M.J. Orts, A. Gaki, M. Gregou, M. Taxiarchou, A. Bianchin, and M. Emiliani, Nanobased coatings with improved NIR reflecting properties for building envelope materials: Development and natural aging effect measurement, Cem. Concr. Compos., vol. 36, pp. 128–135, 2013.
  • R.M. Reilly, Carbon nanotubes: Potential benefits and risks of nanotechnology in nuclear medicine, J. Nucl. Med., vol. 48, no. 7, pp. 1039–1042, 2007.
  • S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Graphene-based composite materials, Nature, vol. 442, no. 20, pp. 282–286, 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.