2,968
Views
35
CrossRef citations to date
0
Altmetric
Original Articles

Biofidelic human brain tissue surrogates

, , &
Pages 1335-1341 | Received 19 Nov 2015, Accepted 22 Dec 2015, Published online: 20 Sep 2016

References

  • J.K. Mai, J. Assheuer, and G. Paxinos, Atlas of the Human Brain, Academic Press, San Diego, CA, 1997.
  • E.D. Bigler, M. Weiner, and A. Lipton, Traumatic brain injury. In: Textbook of Alzheimer Disease and Other Dementias, The American Psychiatric Association Publishing, Arlington, VA, pp. 229–246, 2009.
  • J. Ghajar, Traumatic brain injury, Lancet, vol. 356, pp. 923–929, 2000.
  • M.S. Chafi, S. Ganpule, L. Gu, and N. Chandra, Dynamic response of brain subjected to blast loadings: Influence of frequency ranges, Int. J. Appl. Mech., vol. 3, pp. 803–823, 2011.
  • N. Chandra, S. Ganpule, N. Kleinschmit, R. Feng, A. Holmberg, A. Sundaramurthy, V. Selvan, and A. Alai, Evolution of blast wave profiles in simulated air blasts: Experiment and computational modeling, Shock Waves, vol. 22, pp. 403–415, 2012.
  • S. Ganpule, and N. Chandra, Mechanics of interaction of blast waves on surrogate head: Effect of head orientation, ASME 2013 Summer Bioengineering Conference, pp. V01BT55A028, June 26–29, Sunriver, OR, 2013.
  • S. Ganpule, L. Gu, A. Alai, and N. Chandra, Role of helmet in the mechanics of shock wave propagation under blast loading conditions, Comput. Methods Biomech. Biomed. Eng., vol. 15, pp. 1233–1244, 2012.
  • S. Ganpule, L. Gu, G. Cao, and N. Chandra, The effect of shock wave on a human head, ASME 2009 International Mechanical Engineering Congress and Exposition, pp. 339–346, November 13–19, Lake Buena Vista, FL, 2009.
  • S. Ganpule, L. Gu, and N. Chandra, MRI-based three dimensional modeling of blast traumatic brain injury (bTBI), ASME 2010 International Mechanical Engineering Congress and Exposition, pp. 181–183, November 12–18, Vancouver, Canada, 2010.
  • L. Gu, M.S. Chafi, S. Ganpule, and N. Chandra, The influence of heterogeneous meninges on the brain mechanics under primary blast loading, Composites Part B, vol. 43, pp. 3160–3166, 2012.
  • R.K. Gupta, and A. Przekwas, Mathematical models of blast-induced TBI: Current status, challenges, and prospects, Front. Neurol., vol. 4, pp. 1–21, 2013.
  • K. Kangarlou, Mechanics of blast loading on the head models in the study of traumatic brain injury, Nationalpark-Forschung In Der Schweiz (Switzerland Research Park Journal), vol. 12, no. 3, pp. 511–531, 2013.
  • A. Sundaramurthy, A. Alai, S. Ganpule, A. Holmberg, E. Plougonven, and N. Chandra, Blast-induced biomechanical loading of the rat: An experimental and anatomically accurate computational blast injury model, J. Neurotrauma, vol. 29, pp. 2352–2364, 2012.
  • A. Chanda, R. Graeter, and V. Unnikrishnan, Effect of blasts on subject-specific computational models of skin and bone sections at various locations on the human body, AIMS Mater. Sci., vol. 2, no. 4, pp. 425–447, 2015.
  • D. Jenson, and V. Unnikrishnan, Multiscale simulation of ballistic composites for blast induced traumatic brain injury mitigation, ASME 2014 International Mechanical Engineering Congress and Exposition, pp. V009T12A072–74, November 14–20, Montreal, Canada, 2014.
  • D. Jenson, and V.U. Unnikrishnan, Energy dissipation of nanocomposite based helmets for blast-induced traumatic brain injury mitigation, Compos. Struct., vol. 121, pp. 211–216, 2015.
  • C. F. D. Control, and Prevention, Sports-related recurrent brain injuries—United States, Int. J. Trauma Nurs., vol. 3, pp. 88–90, 1997.
  • J.P. Kelly, and J.H. Rosenberg, Diagnosis and management of concussion in sports, Neurology, vol. 48, pp. 575–580, 1997.
  • S.T. DeKosky, M.D. Ikonomovic, and S. Gandy, Traumatic brain injury—Football, warfare, and long-term effects, New Engl. J. Med., vol. 363, pp. 1293–1296, 2010.
  • A.I. Faden, P. Demediuk, S.S. Panter, and R. Vink, The role of excitatory amino acids and NMDA receptors in traumatic brain injury, Science, vol. 244, pp. 798–800, 1989.
  • C. Werner, and K. Engelhard, Pathophysiology of traumatic brain injury, Br. J. Anaesthesia, vol. 99, pp. 4–9, 2007.
  • R.O.S. Mejia, V.O. Ona, M. Li, and R.M. Friedlander, Minocycline reduces traumatic brain injury-mediated caspase-1 activation, tissue damage, and neurological dysfunction, Neurosurgery, vol. 48, pp. 1393–1401, 2001.
  • A.S. Cunningham, R. Salvador, J.P. Coles, D.A. Chatfield, P.G. Bradley, A.J. Johnston, L.A. Steiner, T.D. Fryer, F.I. Aigbirhio, P. Smielewski, G.B. Williams, T.A. Carpenter, J.H. Gillard, J.D. Pickard, and D.K. Menon, Physiological thresholds for irreversible tissue damage in contusional regions following traumatic brain injury, Brain, vol. 128, pp. 1931–1942, 2005.
  • K.A. Crutcher, S.A. Scott, S. Liang, W.V. Everson, and J. Weingartner, Detection of NGF-like activity in human brain tissue: Increased levels in Alzheimer's disease, J. Neurosci., vol. 13, pp. 2540–2550, 1993.
  • E. Englund, A. Brun, and C. Alling, White matter changes in dementia of Alzheimer's type, Brain, vol. 111, pp. 1425–1439, 1988.
  • T.D. Bird, S. Stranahan, S. Sumi, and M. Raskind, Alzheimer's disease: Choline acetyltransferase activity in brain tissue from clinical and pathological subgroups, Ann. Neurol., vol. 14, pp. 284–293, 1983.
  • M.A. Ikram, H.A. Vrooman, M.W. Vernooij, T. den Heijer, A. Hofman, W.J. Niessen, et al., Brain tissue volumes in relation to cognitive function and risk of dementia, Neurobiol. Aging, vol. 31, pp. 378–386, 2010.
  • R. Mielke, K. Herholz, M. Grond, J. Kessler, and W.-D. Heiss, Severity of vascular dementia is related to volume of metabolically impaired tissue, Arch. Neurol., vol. 49, pp. 909–913, 1992.
  • F.E. de Leeuw, J.C. de Groot, M. Oudkerk, J. Witteman, A. Hofman, J. Van Gijn, et al., Hypertension and cerebral white matter lesions in a prospective cohort study, Brain, vol. 125, pp. 765–772, 2002.
  • Y. Ge, R.I. Grossman, J.S. Babb, M.L. Rabin, L.J. Mannon, and D.L. Kolson, Age-related total gray matter and white matter changes in normal adult brain. Part II: Quantitative magnetization transfer ratio histogram analysis, Am. J. Neuroradiol., vol. 23, pp. 1334–1341, 2002.
  • Y. Ge, R.I. Grossman, J.S. Babb, M.L. Rabin, L.J. Mannon, and D.L. Kolson, Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis, Am. J. Neuroradiol., vol. 23, pp. 1327–1333, 2002.
  • L. Pantoni, J.H. Garcia, and J.A. Gutierrez, Cerebral white matter is highly vulnerable to ischemia, Stroke, vol. 27, pp. 1641–1647, 1996.
  • T. Novitzky, D.K. Cooper, D. Morrell, and S. Isaacs, Change from aerobic to anaerobic metabolism after brain death, and reversal following triiodothyronine therapy, Transplantation, vol. 45, pp. 32–36, 1988.
  • A. Chanda, V. Unnikrishnan, and Z. Flynn, Biofidelic human skin simulant, U.S. Patent No. 62/189,504, 2015.
  • K. Miller, and K. Chinzei, Constitutive modelling of brain tissue: Experiment and theory, J. Biomech., vol. 30, pp. 1115–1121, 1997.
  • B. Rashid, M. Destrade, and M.D. Gilchrist, Mechanical characterization of brain tissue in compression at dynamic strain rates, J. Mech. Behav. Biomed. Mater., vol. 10, pp. 23–38, 2012.
  • F. Pervin, and W.W. Chen, Dynamic mechanical response of bovine gray matter and white matter brain tissues under compression, J. Biomech., vol. 42, pp. 731–735, 2009.
  • K. Miller, Method of testing very soft biological tissues in compression, J. Biomech., vol. 38, pp. 153–158, 2005.
  • M. Estes, and J.H. MacElhaney, Response of Brain Tissue to Compressive Loading, ASME, New York, 1970.
  • J.E. Galford, and J.H. McElhaney, A viscoelastic study of scalp, brain, and dura, J. Biomech., vol. 3, pp. 211–221, 1970.
  • X. Jin, F. Zhu, H. Mao, M. Shen, and K.H. Yang, A comprehensive experimental study on material properties of human brain tissue, J. Biomech., vol. 46, pp. 2795–2801, 2013.
  • O.A. Shergold, N.A. Fleck, and D. Radford, The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates, Int. J. Impact Eng., vol. 32, pp. 1384–1402, 2006.
  • A. Chanda, V. Unnikrishnan, S. Roy, and H.E. Richter, Computational modeling of the female pelvic support structures and organs to understand the mechanism of pelvic organ prolapse: A review, Appl. Mech. Rev., vol. 67, art. 040801, 2015.
  • P. Martins, R. Natal Jorge, and A. Ferreira, A comparative study of several material models for prediction of hyperelastic properties: Application to silicone‐rubber and soft tissues, Strain, vol. 42, pp. 135–147, 2006.
  • L.Y.S. Gonzalez, M.G. Botero, and M. Betancur, Hyperelastic Material Modeling, Universidad EAFIT, Medellín, Colombia, 2005.
  • G.A. Holzapfel, Nonlinear Solid Mechanics (Vol. 24), Wiley, Chichester, UK, 2000.
  • M.T. Prange, and S.S. Margulies, Regional, directional, and age-dependent properties of the brain undergoing large deformation, J. Biomech. Eng., vol. 124, pp. 244–252, 2002.
  • D. Meaney, Relationship between structural modeling and hyperelastic material behavior: application to CNS white matter, Biomech. Model. Mechanobiol., vol. 1, pp. 279–293, 2003.
  • A.F. Christ, K. Franze, H. Gautier, P. Moshayedi, J. Fawcett, R.J. Franklin, et al., Mechanical difference between white and gray matter in the rat cerebellum measured by scanning force microscopy, J. Biomech., vol. 43, pp. 2986–2992, 2010.
  • F. Velardi, F. Fraternali, and M. Angelillo, Anisotropic constitutive equations and experimental tensile behavior of brain tissue, Biomech. Model. Mechanobiol., vol. 5, pp. 53–61, 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.