162
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Thermal environmental effects on free vibration of functionally graded isosceles triangular microplates

&
Pages 885-907 | Received 15 Jan 2016, Accepted 26 Apr 2016, Published online: 02 Dec 2016

References

  • P. Gammel, G. Fischer, and J. Bouchaud, RF MEMS and NEMS technology, devices, and applications, Bell Lab. Technol. J., vol. 10, pp. 29–59, 2005.
  • A.M. Lajimi, E.A. Rahmany, and G.R. Heppler, On natural frequencies and mode shapes of microbeams, Proceedings of the International Multi Conference of Engineers and Computer Scientists, Vol. 2, pp. 18–20, March 18–20, Hong Kong, 2009.
  • J. Pei, F. Tian, and T. Thundat, Glucose biosensor based on the microcantilever, Anal. Chem., vol. 76, pp. 292–297, 2004.
  • J.L. Arlett, E.B. Myers, and M.L. Roukes, Comparative advantages of mechanical biosensor, Nat. Nanotechnol., vol. 6, pp. 203–215, 2011.
  • D. Filippini, T.P.M. Andersson, S.P.S. Svensson, and I. Lundstrom, Microplate based biosensing with a computer screen aided technique, Biosens. Bioelectron., vol. 19, pp. 35–41, 2003.
  • P.M. Singh, Application of Biolog FF micro plate for substrate utilization and metabolite profiling of closely related fungi, J. Microbiol. Methods, vol. 77, pp. 102–108, 2009.
  • G.J. Bruin, F. Waldmeier, K.O. Boernsen, U. Pfaar, G. Gross, and M. Zollinger, A microplate solid scintillation counter as a radioactivity detector for high performance liquid chromatography in drug metabolism: Validation and applications, J. Chromatogr. A, vol. 1133, pp. 184–194, 2006.
  • S. Suresh and A. Mortensen, Fundamentals of Functionally Graded Materials: Processing and Thermomechanical Behavior of Graded Metals and Metal-Ceramic Composites, Vol. 42, IOM Communications Ltd, London, pp. 85–116, 1997.
  • Y.Q. Fu, H.J. Du, W.M. Huang, S. Zhang, and M. Hu, TiNi-based thin films in MEMS applications: A review, Sens. Actuators, A, vol. 112, pp. 395–408, 2004.
  • A. Witvrouw and A. Mehta, The use of functionally graded poly-SiGe layers for MEMS applications, Mater Sci. Forum, vol. 492–493, pp. 255–260, 2005.
  • D.J. Hasanyan, R.C. Batra, and S. Harutyunyan, Pull-in instabilities in functionally graded microthermoelectromechanical systems, J. Therm. Stresses, vol. 31, pp. 1006–1021, 2008.
  • C.F. Lü, C.W. Lim, and W.Q. Chen, Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory, Int. J. Solids Struct., vol. 46, pp. 1176–1185, 2009.
  • M. Rahaeifard, M. Kahrobaiyan, and M.T. Ahmadian, Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials, Proceedings of the 3rd International Conference on Micro Nanosystems, pp. 539–544, August 30–September 2, San Diego, CA, 2009.
  • Y. Moser and M.A.M. Gijs, Miniaturized flexible temperature sensor, J. Microelectromech. Syst., vol. 16, pp. 1349–1354, 2007.
  • H. Qu and H. Xie, Process development for CMOS-MEMS sensors with robust electrically isolated bulk silicon microstructures, J. Microelectromech. Syst., vol. 16, pp. 1152–1161, 2007.
  • A.C.M. Chong, F. Yang, D.C.C. Lam, and P. Tong, Torsion and bending of micron-scaled structures, J. Mater. Res., vol. 16, pp. 1052–1058, 2001.
  • D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, and P. Tong, Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids, vol. 51, pp. 1477–1508, 2003.
  • A.W. McFarland and J.S. Colton, Role of material microstructure in plate stiffness with relevance to microcantilever sensors, J. Micromech. Microeng., vol. 15, pp. 1060–1067, 2005.
  • A.C. Eringen and D.G.B. Edelen, On nonlocal elasticity, Int. J. Eng. Sci., vol. 10, pp. 233–248, 1972.
  • A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., vol. 54, pp. 4703–4710, 1983.
  • A.C. Eringen, Nonlocal Continuum Field Theories, Springer, New York, 2002.
  • R.A. Toupin, Elastic materials with couple-stress, Arch. Ration. Mech. Anal., vol. 11, pp. 385–414, 1960.
  • R. Mindlin and H. Tiersten, Effects of couple-stresses in linear elasticity, Arch. Ration. Mech. Anal., vol. 11, pp. 415–448, 1962.
  • W.T. Koiter, Couple stresses in the theory of elasticity, Proc. Konink Nederl Akad. Wetensch B, vol. 67, pp. 17–44, 1964.
  • F. Yang, A.C.M. Chong, D.C.C. Lam, and P. Tong, Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., vol. 39, pp. 2731–2743, 2002.
  • B. Akgöz and Ö Civalek, Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory, Compos. Struct., vol. 98, pp. 314–322, 2013.
  • R.D. Mindlin, Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., vol. 16, no. 1, pp. 51–78, 1964.
  • R.D. Mindlin, Second gradient of strain and surface tension in linear elasticity, Int. J. Solids Struct., vol. 1, pp. 417–438, 1965.
  • S.C. Pradhan and J.K. Phadikar, Nonlocal elasticity theory for vibration of nanoplates, J. Sound Vib., vol. 325, pp. 206–213,2009.
  • P. Malekzadeh and M. Shojaee, Free vibration of nanoplates based on a nonlocal two-variable refined plate theory, Compos. Struct., vol. 95, pp. 443–452, 2013.
  • M. Zare, R. Nazemnezhad, and S. Hosseini-Hashemi, natural frequency analysis of functionally graded rectangular nanoplates with different boundary conditions via an analytical method, Meccanica, vol. 50, pp. 2391–2408, 2015.
  • S.K. Park and X.L. Gao, Bernoulli-Euler beam model based on a modified couple stress theory, J. Micromech. Microeng., vol. 52, pp. 2355–2359, 2006.
  • H.M. Ma, X.L. Gao, and J.N. Reddy, A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, J. Mech. Phys. Solids, vol. 56, pp. 3379–3391, 2008.
  • M. Asghari, M. Rahaeifard, M.H. Kahrobaiyan, and M.T. Ahmadian, The modified couple stress functionally graded Timoshenko beam formulation, Mater. Des., vol. 32, pp. 1435–1443, 2010.
  • L.L. Ke, Y.S. Wang, and Z.D. Wang, Thermal effect on free vibration and buckling of size-dependent microbeams, Physica E, vol. 43, pp. 1387–1393, 2011.
  • L.L. Ke, J. Yang, S. Kitipornchai, and M.A. Bradford, Bending, buckling and vibration of size-dependent functionally graded annular microplates, Compos. Struct., vol. 94, pp. 3250–3257, 2012.
  • L.L. Ke, J. Yang, S. Kitipornchai, M.A. Bradford, and Y.S. Wang, Axisymmetric nonlinear free vibration of size-dependent functionally graded annular microplates, Composites Part B, vol. 53, pp. 207–217, 2013.
  • J. Lou, L. He, and J. Du, A unified higher order plate theory for functionally graded microplates based on the modified couple stress theory, Compos. Struct., vol. 133, pp. 1036–1047, 2015.
  • H. Salehipour, H. Nahvi, and A.R. Shahidi, Exact closed-form free vibration analysis for functionally graded micro/nano plates based on modified couple stress and three-dimensional elasticity theories, Compos. Struct., vol. 124, pp. 283–291, 2015.
  • L. He, J. Lou, Z. Enyang, Y. Wang, and Y. Bai, A size-dependent four variable refined plate model for functionally graded microplates based on modified couple stress theory, Compos. Struct., vol. 130, pp. 107–115, 2015.
  • S. Ramezani, Nonlinear vibration analysis of micro-plates based on strain gradient easticity theory, Nonlinear Dyn., vol. 73, pp. 1399–1421, 2013.
  • S. Ramezani, A shear deformation micro-plate model based on the most general form of strain gradient elasticity, Int. J. Mech. Sci., vol. 57, pp. 34–42, 2012.
  • R. Ansari, M. Faghih Shojaei, V. Mohammadi, M. Bazdid-Vahdati, and H. Rouhi, Triangular Mindlin microplate element, Comput. Methods Appl. Mech. Eng., vol. 295, pp. 56–76, 2015.
  • B. Wang, J. Zhao, and S. Zhou, A microscale Timoshenko beam model based on strain gradient elasticity theory, Eur. J. Mech. A. Solid, vol. 29, pp. 591–599, 2010.
  • R. Ansari, R. Gholami, and S. Sahmani, Free vibration of size-dependent functionally graded microbeams based on a strain gradient theory, Compos. Struct., vol. 94, pp. 221–228, 2011.
  • J. Lei, Y. He, B. Zhang, Z. Gan, and P. Zeng, Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory, Int. J. Eng. Sci., vol. 72, pp. 36–52, 2013.
  • S. Sahmani, M. Bahrami, and R. Ansari, Nonlinear free vibration analysis of functionally graded third-order shear deformable microbeams based on the modified strain gradient elasticity theory, Compos. Struct., vol. 110, pp. 219–230, 2014.
  • A.R. Setoodeh and S. Afrahim, Nonlinear dynamic analysis of FG micro-pipes conveying fluid based on strain gradient theory, Compos. Struct., vol. 116, pp. 128–135, 2014.
  • R. Ansari, R. Gholami, V. Mohammadi, and M. Faghih Shojaei, Size-dependent pull-in instability of hydrostatically and electrostatically actuated circular microplates, Nonlinear Dyn., vol. 73, pp. 1515–1526, 2013.
  • S. Sahmani and R. Ansari, On the free vibration response of functionally graded higher-order shear deformable microplates based on the strain gradient elasticity theory, Compos. Struct., vol. 95, pp. 430–442, 2013.
  • A. Li, S. Zhou, S. Zhou, and B. Wang, A size-dependent model for bi-layered Kirchhoff micro-plate based on strain gradient elasticity theory, Compos. Struct., vol. 113, pp. 272–280, 2014.
  • R. Ansari, R. Gholami, M. Faghih Shojaei, V. Mohammadi, and M.A. Darabi, Size-dependent nonlinear bending and postbuckling of functionally graded Mindlin rectangular microplates considering the physical neutral plane position, Compos. Struct., vol. 127, pp. 87–98, 2015.
  • R. Ansari, R. Gholami, M. Faghih Shojaei, V. Mohammadi, and S. Sahmani, Bending, buckling and free vibration analysis of size-dependent functionally graded circular/annular microplates based on the modified strain gradient elasticity theory, Eur. J. Mech. A. Solids, vol. 49, pp. 251–267, 2015.
  • B. Zhang, Y. He, D. Liu, L. Shen, and J. Lei, An efficient size-dependent plate theory for bending, buckling and free vibration analyses of functionally graded microplates resting on elastic foundation, Appl. Math. Modell., vol. 39, pp. 3814–3845, 2015.
  • B. Zhang, Y. He, D. Liu, J. Lei, S. Lei, and L. Wang, A size-dependent third-order shear deformable plate model incorporating strain gradient effects for mechanical analysis of functionally graded circular/annular microplates, Composites Part B, vol. 79, pp. 553–580, 2015.
  • J. Shu and N. Fleck, The prediction of a size effect in microindentation, Int. J. Solids Struct., vol. 35, pp. 1363–1383, 1998.
  • Y.K. Cheung and D. Zhou, Three-dimensional vibration analysis of cantilevered and completely free isosceles triangular plates, Int. J. Solids Struct., vol. 39, pp. 673–687, 2002.
  • D. Zhou, Y.K. Cheung, F.T.K. Au, and S.H. Lo, Three-dimensional vibration analysis of thick rectangular plates using chebyshev polynomial and Ritz method, Int. J. Solids Struct., vol. 39, pp. 6339–6353, 2002.
  • D. Zhou, Y.K. Cheung, F.T.K. Au, and S.H. Lo, Three-dimensional vibration analysis of circular and annular plates via the Chebyshev–Ritz method, Int. J. Solids Struct., vol. 40, pp. 3089–3105,2003.
  • D. Zhou, S.H. Lo, F.T.K. Au, Y.K. Cheung, and W.Q. Liu, 3-D vibration analysis of skew thick plates using Chebyshev–Ritz method, Int. J. Mech. Sci., vol. 48, pp. 1481–1493, 2006.
  • D. Zhou, S.H. Lo, and Y.K. Cheung, 3-D vibration analysis of annular sector plates using the Chebyshev–Ritz method, J. Sound Vib., vol. 320, pp. 421–437, 2009.
  • C.Y. Dong, Three-dimensional vibration analysis of functionally graded annular plates using the Chebyshev–Ritz method, Mater. Des., vol. 29, pp. 1518–1525, 2008.
  • P. Malekzadeh, F. Bahranifard, and S. Ziaee, Three-dimensional free vibration analysis of functionally graded cylindrical panels with cut-out using Chebyshev–Ritz method, Compos. Struct., vol. 105, pp. 1–13, 2013.
  • H.S. Shen and Z.X. Wang, Assessment of Voigt and Mori–Tanaka models for vibration analysis of functionally graded plates, Compos. Struct., vol. 94, pp. 2197–2208, 2012.
  • Y.W. Kim, Temperature dependent vibration analysis of functionally graded rectangular plates, J. Sound Vib., vol. 284, pp. 531–549,2005.
  • S. Kitiporrchai, K.M. Liew, Y. Xiang, and C.M. Wang, Free vibration of isosceles triangular Mindlin plates, Int. J. Mech. Sci., vol. 35, pp. 89–102, 1993.
  • H. Kurtaran, Shape effect on free vibration of functionally graded plates, Int. J. Eng. Appl. Sci., vol. 6, pp. 52–67, 2014.
  • S.S. Chen, C.J. Xu, G.S. Tong, and X. Wei, Free vibration of moderately thick functionally graded plates by a meshless local natural neighbor interpolation method, Eng. Anal. Boundary Elem., vol. 61, pp. 114–126, 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.