290
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Effect of bladder and rectal loads on the vaginal canal and levator ani in varying pelvic floor conditions

&
Pages 1214-1223 | Received 31 Jan 2017, Accepted 12 May 2017, Published online: 13 Nov 2017

References

  • A.A. White, J.W. Pichert, S.H. Bledsoe, C. Irwin, and S.S. Entman, Cause and effect analysis of closed claims in obstetrics and gynecology, Obstet. Gynecol., vol. 105, pp. 1031–1038, 2005.
  • J.A. Ashton-Miller and J. DeLancey, Functional anatomy of the female pelvic floor, Annal. New York Acad. Sci., vol. 1101, pp. 266–296, 2007.
  • J.E. Jelovsek, C. Maher, and M.D. Barber, Pelvic organ prolapse, The Lancet, vol. 369, pp. 1027–1038, 2007.
  • A.M. Weber and H.E. Richter, Pelvic organ prolapse, Obstet. Gynecol., vol. 106, pp. 615–634, 2005.
  • E.J. McGuire, B. Lytton, V. Pepe, and E.I. Kohorn, Stress urinary incontinence, Obstet. Gynecol., vol. 47, pp. 255–264, 1976.
  • M. Tawhai, J. Bischoff, D. Einstein, A. Erdemir, T. Guess, and J. Reinbolt, Multiscale modeling in computational biomechanics, IEEE Eng. Med. Biol. Magaz., vol. 28, pp. 41–49, 2009.
  • A. Chanda, V. Unnikrishnan, S. Roy, and H.E. Richter, Computational modeling of the female pelvic support structures and organs to understand the mechanism of pelvic organ prolapse: A review, Appl. Mech. Rev., vol. 67, p. 040801, 2015.
  • Š. Janda, F.C. Van Der Helm, and S.B. de Blok, Measuring morphological parameters of the pelvic floor for finite element modelling purposes, J. Biomech., vol. 36, pp. 749–757, 2003.
  • L. Chen, J.A. Ashton-Miller, Y. Hsu, and J. DeLancey, Interaction among apical support, levator ani impairment, and anterior vaginal wall prolapse, Obstet. Gynecol., vol. 108, pp. 324–332, 2006.
  • S.-L. Lee, P. Horkaew, A. Darzi, and G.-Z. Yang, Statistical shape modelling of the levator ani with thickness variation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2004, Springer, Heidelberg, Germany, pp. 258–265, 2004.
  • S.-L. Lee, E. Tan, V. Khullar, W. Gedroyc, A. Darzi, and G.-Z. Yang, Physical-based statistical shape modeling of the levator ani, IEEE Trans. Med. Imaging, vol. 28, pp. 926–936, 2009.
  • M.P. Parente, R.M.N. Jorge, T. Mascarenhas, and A.L. Silva-Filho, The influence of pelvic muscle activation during vaginal delivery, Obstet. Gynecol., vol. 115, pp. 804–808, 2010.
  • D. Jing, J.A. Ashton-Miller, and J.O. DeLancey, A subject-specific anisotropic visco-hyperelastic finite element model of female pelvic floor stress and strain during the second stage of labor, J. Biomech., vol. 45, pp. 455–460, 2012.
  • X. Li, J.A. Kruger, M.P. Nash, and P.M. Nielsen, Modeling childbirth: Elucidating the mechanisms of labor, Wiley Interdiscip. Rev.: Syst. Biol. Med., vol. 2, pp. 460–470, 2010.
  • M. Parente, R.N. Jorge, T. Mascarenhas, A. Fernandes, and J. Martins, Deformation of the pelvic floor muscles during a vaginal delivery, Int. Urogynecology J., vol. 19, pp. 65–71, 2008.
  • K. Noakes, I. Bissett, A. Pullan, and L. Cheng, Anatomically based computational models of the male and female pelvic floor and anal canal, Engineering in Medicine and Biology Society, 2006. EMBS'06. 28th Annual International Conference of the IEEE, New York, US, pp. 3815–3818, 2006.
  • K.F. Noakes, I.P. Bissett, A.J. Pullan, and L.K. Cheng, Anatomically realistic three-dimensional meshes of the pelvic floor & anal canal for finite element analysis, Annal. Biomed. Eng., vol. 36, pp. 1060–1071, 2008.
  • K.F. Noakes, A.J. Pullan, I.P. Bissett, and L.K. Cheng, Subject specific finite elasticity simulations of the pelvic floor, J. Biomech., vol. 41, pp. 3060–3065, 2008.
  • K.A. Larson, J. Luo, K.E. Guire, L. Chen, J.A. Ashton-Miller, and J.O. DeLancey, 3D analysis of cystoceles using magnetic resonance imaging assessing midline, paravaginal, and apical defects, Int. Urogynecology J., vol. 23, pp. 285–293, 2012.
  • C. Rubod, P. Lecomte-Grosbras, M. Brieu, G. Giraudet, N. Betrouni, and M. Cosson, 3D simulation of pelvic system numerical simulation for a better understanding of the contribution of the uterine ligaments, Int. Urogynecology J., vol. 24, pp. 2093–2098, 2013.
  • J. Luo, K.A. Larson, D.E. Fenner, J.A. Ashton-Miller, and J.O. DeLancey, Posterior vaginal prolapse shape and position changes at maximal Valsalva seen in 3-D MRI-based models, Int. Urogynecol. J., vol. 23, pp. 1301–1306, 2012.
  • T. Spirka, K. Kenton, L. Brubaker, and M. Damaser, Pathway to finite element analysis of stress urinary incontinence mechanics, ASME 2011 Summer Bioengineering Conference, Farmington, PA, US, pp. 1293–1294, 2011.
  • T. Spirka, K. Kenton, L. Brubaker, and M.S. Damaser, Effect of material properties on predicted vesical pressure during a cough in a simplified computational model of the bladder and urethra, Ann. Biomed. Eng., vol. 41, pp. 185–194, 2013.
  • P. Lecomte-Grosbras, M.N. Diallo, J.-F. Witz, D. Marchal, J. Dequidt, S. Cotin et al., Towards a better understanding of pelvic system disorders using numerical simulation, In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013, Springer, Nagoya, Japan, pp. 307–314, 2013.
  • T.A. Spirka, Finite element modeling of stress urinary incontinence mechanics, Doctoral dissertation, Fenn College of Engineering, Cleveland State University, Cleveland, OH, US, 2010.
  • Z.-W. Chen, P. Joli, Z.-Q. Feng, M. Rahim, N. Pirró, and M.-E. Bellemare, Female patient-specific finite element modeling of pelvic organ prolapse (POP), J. Biomech., vol. 48, no. 2, pp. 238–245, 2015.
  • K.A. Larson, J. Luo, A. Yousuf, J.A. Ashton-Miller, and J.O. Delancey, Measurement of the 3D geometry of the fascial arches in women with a unilateral levator defect and “architectural distortion, Int. Urogynecology J., vol. 23, pp. 57–63, 2012.
  • J. Luo, Biomechanical analyses of posterior vaginal prolapse: MR imaging and computer modeling studies, Doctoral Dissertation, Mechanical Engineering, The University of Michigan, MI, US, 2012.
  • J. Luo, C. Betschart, L. Chen, J.A. Ashton-Miller, and J.O. DeLancey, Using stress MRI to analyze the 3D changes in apical ligament geometry from rest to maximal Valsalva: a pilot study, Int. Urogynecology J., vol. 25, pp. 197–203, 2014.
  • A. Chanda, V. Unnikrishnan, H.E. Richter, and M.E. Lockhart, A biofidelic computational model of the female pelvic system to understand effect of bladder fill and progressive vaginal tissue stiffening due to prolapse on anterior vaginal wall, Int. J. Numer. Methods Biomed. Eng., vol. 32, no. 11, e02767(1–16), 2016.
  • D.S. Shin, M.S. Chung, H.S. Park, J.S. Park, and S.B. Hwang, Browsing software of the visible Korean data used for teaching sectional anatomy, Anatomical Sci. Educ., vol. 4, pp. 327–332, 2011.
  • J.S. Park, M.S. Chung, S.B. Hwang, B.S. Shin, and H.S. Park, Visible Korean Human: Its techniques and applications, Clin. Anat., vol. 19, pp. 216–224, 2006.
  • J.S. Park, M.S. Chung, S.B. Hwang, Y.S. Lee, D.-H. Har, and H.S. Park, Visible Korean human: Improved serially sectioned images of the entire body, IEEE Trans. Med. Imaging, vol. 24, pp. 352–360, 2005.
  • A. Top, G. Hamarneh, and R. Abugharbieh, Turtleseg software, Oxipita Inc, Vancouver, Canada, 2013.
  • P. Cignoni, M. Corsini, and G. Ranzuglia, Meshlab: An open-source 3d mesh processing system, Ercim News, vol. 73, p. 6, 2008.
  • E. Wang, T. Nelson, and R. Rauch, Back to elements-tetrahedra vs. hexahedra, Proceedings of the 2004 International ANSYS Conference, Pittsburgh, PA, United States, 2004.
  • A. Chanda, I. Meyer, H.E. Richter, M.E. Lockhart, F.R.D. Moraes, and V. Unnikrishnan, Vaginal changes due to varying degrees of rectocele prolapse: A computational study, J. Biomech. Eng., vol. 139, no. 10, p. 101001, 2017.
  • A. Chanda and H. Ghoneim, Pumping potential of a two-layer left-ventricle-like flexible-matrix-composite structure, Composite Struct., vol. 122, pp. 570–575, 2015.
  • V. U. Unnikrishnan, G.U. Unnikrishnan, and J.N. Reddy, Biomechanics of breast tumor: Effect of collagen and tissue density, Int. J. Mech. Mater. Des., vol. 8, pp. 257–267, 2012/09/01 2012.
  • G.U. Unnikrishnan, V.U. Unnikrishnan, and J.N. Reddy, Constitutive material modeling of cell: A micromechanics approach, J. Biomech. Eng., vol. 129, pp. 315–323, 2007.
  • G.U. Unnikrishnan, V.U. Unnikrishnan, J.N. Reddy, and C.T. Lim, Review on the constitutive models of tumor tissue for computational analysis, Appl. Mech. Rev., vol. 63, pp. 040801–040807, 2010.
  • A. Chanda, C. Callaway, C. Clifton, and V. Unnikrishnan, Biofidelic human brain tissue surrogates, Mech. of Adv. Mater. and Struct. (MAMS) J., Taylor & Francis, 2016. https://doi.org/10.1080/15376494.2016.1143749.
  • A. Chanda, R. Graeter, and V. Unnikrishnan, Effect of blasts on subject-specific computational models of skin and bone sections at various locations on the human body, AIMS Mater. Sci., vol. 2, pp. 425–447, 2015.
  • A. Chanda and V. Unnikrishnan, A realistic 3D computational model of the closure of skin wound with interrupted sutures, J. Mech. Med. Biol., vol. 17, no. 1, pp. 1750025, 2017.
  • A. Chanda and V. Unnikrishnan, Human tissue simulants for study of traumatic brain injury (TBI), Proceedings of the American Society for Composites: Thirty-First Technical Conference, Williamsburg, Virginia, US, 2016.
  • A. Chanda, V. Unnikrishnan, Z. Flynn, and K. Lackey, Experimental study on tissue phantoms to understand the effect of injury and suturing on human skin mechanical properties, Proceedings of the Institution of Mechanical Engineers, Part H: J. Eng. Med., vol. 231, no. 1, pp. 80–91, 2017.
  • P. Martins, R. Natal Jorge, and A. Ferreira, A comparative study of several material models for prediction of hyperelastic properties: Application to silicone-rubber and soft tissues, Strain, vol. 42, pp. 135–147, 2006.
  • Z.-W. Chen, P. Joli, Z.-Q. Feng, M. Rahim, N. Pirró, and M.-E. Bellemare, Female patient-specific finite element modeling of pelvic organ prolapse (POP), J. Biomech., vol. 48, pp. 238–245, 2015.
  • L. Chen, J.A. Ashton-Miller, and J.O. DeLancey, A 3D finite element model of anterior vaginal wall support to evaluate mechanisms underlying cystocele formation, J. Biomech., vol. 42, pp. 1371–1377, 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.