392
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Low velocity impact analysis of beams made of short carbon fiber/carbon nanotube-polymer composite: A hierarchical finite element approach

, &
Pages 1104-1114 | Received 30 May 2017, Accepted 11 Jan 2018, Published online: 01 Feb 2018

References

  • S. Iijima, “Helical microtubes of graphitic carbon,” Nature, vol. 354, pp. 56–58, 1991. doi:10.1038/354056a0.
  • E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, “Thermal conductance of an individual single-wall carbon nanotube above room temperature,” Nano Lett., vol. 6, pp. 96–100, 2006. doi:10.1021/nl052145f.
  • M. M. Shokrieh and R. Rafiee, “A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites,” Mech. Compos. Mater., vol. 46, pp. 155–172, 2010. doi:10.1007/s11029-010-9135-0.
  • P. Joshi and S. H. Upadhyay, “Effect of interphase on elastic behavior of multiwalled carbon nanotube reinforced composite,” Comput. Mater. Sci., vol. 87, pp. 267–273, 2014. doi:10.1016/j.commatsci.2014.02.029.
  • B. Mortazavi, J. Bardon, and S. Ahzi, “Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study,” Comput. Mater. Sci., vol. 69, pp. 100–106, 2013. doi:10.1016/j.commatsci.2012.11.035.
  • S. B. Sinnott and R. Andrews, “Carbon nanotubes: Synthesis, properties, and applications,” Crit. Rev. Solid State Mater. Sci., vol. 26, pp. 145–249, 2001. doi:10.1080/20014091104189.
  • S. B. Legoas, V. R. Coluci, S. F. Braga, P. Z. Coura, S. O. Dantas, and D. S. Galvão, “Gigahertz nanomechanical oscillators based on carbon nanotubes,” Nanotechnology, vol. 15, pp. S184, 2004. doi:10.1088/0957-4484/15/4/012.
  • S. Bellucci, “Carbon nanotubes: Physics and applications,” Physica Status Solidi (c), vol. 2, pp. 34–47, 2005. doi:10.1002/pssc.200460105.
  • M. Paradise and T. Goswami, “Carbon nanotubes – Production and industrial applications,” Mater. Des., vol. 28, pp. 1477–1489, 2007. doi:10.1016/j.matdes.2006.03.008.
  • K. Yu, G. Lu, Z. Bo, S. Mao, and J. Chen, “Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications,” J. Phys. Chem. Lett., vol. 2, pp. 1556–1562, 2011. doi:10.1021/jz200641c.
  • M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science, vol. 287, pp. 637–640, 2000. doi:10.1126/science.287.5453.637.
  • B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, and R. O. Ritchie, “Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes,” Mater. Sci. Eng. A, vol. 334, pp. 173–178, 2002. doi:10.1016/S0921-5093(01)01807-X.
  • J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun'ko, “Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites,” Carbon, vol. 44, pp. 1624–1652, 2006. doi:10.1016/j.carbon.2006.02.038.
  • K. Li, X. L. Gao, and A. K. Roy, “Micromechanical modeling of viscoelastic properties of carbon nanotube-reinforced polymer composites,” Mech. Adv. Mater. Struct., vol. 13, pp. 317–328, 2006. doi:10.1080/15376490600583931.
  • R. Ansari and M. K. Hassanzadeh Aghdam, “Micromechanics-based viscoelastic analysis of carbon nanotube-reinforced composites subjected to uniaxial and biaxial loading,” Compos. Part B: Eng., vol. 90, pp. 512–522, 2016. doi:10.1016/j.compositesb.2015.10.048.
  • G. I. Giannopoulos, S. K. Georgantzinos, and N. K. Anifantis, “A semi-continuum finite element approach to evaluate the Young's modulus of single-walled carbon nanotube reinforced composites,” Compos. Part B: Eng., vol. 41, pp. 594–601, 2010. doi:10.1016/j.compositesb.2010.09.023.
  • H. Wan, F. Delale, and L. Shen, “Effect of CNT length and CNT-matrix interphase in carbon nanotube (CNT) reinforced composites,” Mech. Res. Commun., vol. 32, pp. 481–489, 2005. doi:10.1016/j.mechrescom.2004.10.011.
  • A. M. K. Esawi, K. Morsi, A. Sayed, M. Taher, and S. Lanka, “Effect of carbon nanotube (CNT) content on the mechanicalproperties of CNT-reinforced aluminium composites,” Compos. Sci. Technol., vol. 70, pp. 2237–2241, 2010. doi:10.1016/j.compscitech.2010.05.004.
  • J. Xiang, L. Xie, S. A. Meguid, S. Pang, J. Yi, Y. Zhang, and R. Liang, “An atomic-level understanding of the strengthening mechanism of aluminum matrix composites reinforced by aligned carbon nanotubes,” Comput. Mater. Sci., vol. 128, pp. 359–372, 2017. doi:10.1016/j.commatsci.2016.11.032.
  • S. I. Kundalwal and M. C. Ray, “Effect of carbon nanotube waviness on the effective thermoelastic properties of a novel continuous fuzzy fiber reinforced composite,” Compos. Part B: Eng., vol. 57, pp. 199–209, 2014. doi:10.1016/j.compositesb.2013.10.003.
  • B. Arash, Q. Wang, and V. K. Varadan, “Mechanical properties of carbon nanotube/polymer composites,” Sci. Rep., vol. 4, 6479, 2014. doi:10.1038/srep06479.
  • L. L. Ke, J. Yang, and S. Kitipornchai, “Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams,” Compos. Struct., vol. 92, pp. 676–683, 2010. doi:10.1016/j.compstruct.2009.09.024.
  • R. Ansari, M. Faghih Shojaei, V. Mohammadi, R. Gholami, and F. Sadeghi, “Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams,” Compos. Struct., vol. 113, pp. 316–327, 2014. doi:10.1016/j.compstruct.2014.03.015.
  • E. Abdollahzadeh Shahrbabaki and A. Alibeigloo, “Three-dimensional free vibration of carbon nanotube-reinforced composite plates with various boundary conditions using ritz method,” Compos. Struct., vol. 111, pp. 362–370, 2014. doi:10.1016/j.compstruct.2014.01.013.
  • F. Lin and Y. Xiang, “Vibration analysis of carbon nanotube reinforced composite plates,” Appl. Mech. Mater., vol. 553, pp. 681–686, 2014. doi:10.4028/www.scientific.net/AMM.553.681.
  • R. Ansari, M. Faghih Shojaei, V. Mohammadi, and F. Sadeghi, “Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams,” Compos. Struct., vol. 113, pp. 316–327, 2014. doi:10.1016/j.compstruct.2014.03.015.
  • H. L. Wu, J. Yang, and S. Kitipornchai, “Imperfection sensitivity of postbuckling behaviour of functionally graded carbon nanotube-reinforced composite beams,” Thin-Walled Struct., vol. 108, pp. 225–233, 2016. doi:10.1016/j.tws.2016.08.024.
  • R. Ansari, A. Shahabodini, and M. Faghih Shojaei, “Vibrational analysis of carbon nanotube-reinforced composite quadrilateral plates subjected to thermal environments using a weak formulation of elasticity,” Compos. Struct., vol. 139, pp. 167–187, 2016. doi:10.1016/j.compstruct.2015.11.079.
  • R. Ansari, T. Pourashraf, R. Gholami, and A. Shahabodini, “Analytical solution for nonlinear postbuckling of functionally graded carbon nanotube-reinforced composite shells with piezoelectric layers,” Compos. Part B: Eng., vol. 90, pp. 267–277, 2016. doi:10.1016/j.compositesb.2015.12.012.
  • A. Ghorbani Shenas, P. Malekzadeh, and S. Ziaee, “Vibration analysis of pre-twisted functionally graded carbon nanotube reinforced composite beams in thermal environment,” Compos. Struct., vol. 162, pp. 325–340, 2017. doi:10.1016/j.compstruct.2016.12.009.
  • R. Ansari, E. Hasrati, M. Faghih Shojaei, R. Gholami, and A. Shahabodini, “Forced vibration analysis of functionally graded carbon nanotube-reinforced composite plates using a numerical strategy,” Physica E, vol. 69, pp. 294–305, 2015. doi:10.1016/j.physe.2015.01.011.
  • K. M. Liew, Z. X. Lei, and L. W. Zhang, “Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review,” Compos. Struct., vol. 120, pp. 90–97, 2015. doi:10.1016/j.compstruct.2014.09.041.
  • Z. Wang, J. Xu, and P. Qiao, “Nonlinear low-velocity impact analysis of temperature-dependent nanotube-reinforced composite plates,” Compos. Struct., vol. 108, pp. 423–434, 2014. doi:10.1016/j.compstruct.2013.09.024.
  • J. E. Jam and Y. Kiani, “Low velocity impact response of functionally graded carbon nanotube reinforced composite beams in thermal environment,” Compos. Struct., vol. 132, pp. 35–43, 2015. doi:10.1016/j.compstruct.2015.04.045.
  • P. Malekzadeh and M. Dehbozorgi, “Low velocity impact analysis of functionally graded carbon nanotubes reinforced composite skew plates,” Compos. Struct., vol. 140, pp. 728–748, 2016. doi:10.1016/j.compstruct.2016.01.045.
  • L. W. Zhang, Z. G. Song, P. Qiao, and K. M. Liew, “Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads,” Comput. Meth. Appl. Mech. Eng., vol. 313, pp. 889–903, 2017. doi:10.1016/j.cma.2016.10.020.
  • P. Upadhyaya and S. Kumar, “Micromechanics of stress transfer through the interphase in fiber-reinforced composites,” Mech. Mater., vol. 89, pp. 190–201, 2015. doi:10.1016/j.mechmat.2015.06.012.
  • S. I. Kundalwal and S. A. Meguid, “Micromechanics modelling of the effective thermoelastic response of nano-tailored composites,” Europ. J. Mech. A/Solids, vol. 53, pp. 241–253, 2015. doi:10.1016/j.euromechsol.2015.05.008.
  • S. I. Kundalwal and M. C. Ray, “Effective properties of a novel continuous fuzzy-fiber reinforced composite using the method of cells and the finite element method,” Europ. J. Mech. A/Solids, vol. 36, pp. 191–203, 2012. doi:10.1016/j.euromechsol.2012.03.006.
  • M. Kulkarni, D. Carnahan, K. Kulkarni, D. Qian, and J. L. Abot, “Elastic response of a carbon nanotube fiber reinforced polymeric composite: A numerical and experimental study,” Compos. Part B, vol. 41, pp. 414–21, 2010. doi:10.1016/j.compositesb.2009.09.003.
  • F. Rezaei, R. Yunus, and N. A. Ibrahim, “Effect of fiber length on thermomechanical properties of short carbon fiber reinforced polypropylene composites,” Mater. Des., vol. 30, pp. 260–263, 2009. doi:10.1016/j.matdes.2008.05.005.
  • A. M. K. Esawi and M. M. Farag, “Carbon nanotube reinforced composites: Potential and current challenges,” Mater. Des., vol. 28, pp. 2394–2401, 2007. doi:10.1016/j.matdes.2006.09.022.
  • E. T. Thostenson, W. Z. Li, D. Z. Wang, Z. F. Ren, and T. W. Chou, “Carbon nanotube/carbon fiber hybrid multiscale composites,” J. Appl. Phys., vol. 91, pp. 6034, 2002. doi:10.1063/1.1466880.
  • E. Bekyarova, E. T. Thostenson, A. Yu, H. Kim, J. Gao, J. Tang, H. T. Hahn, T. W. Chou, M. E. tkis, and R. C. Haddon, “Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites,” Langmuir, vol. 23, pp. 3970–3974, 2007. doi:10.1021/la062743p.
  • M. Al-Haik, C. C. Luhrs, M. M. Reda Taha, A. K. Roy, L. Dai, J. Phillips, and S. Doorn, “Hybrid carbon fibers/carbon nanotubes structures for next generation polymeric composites,” J. Nanotech., vol. 2010, pp. 1–9, 2010. doi:10.1155/2010/860178.
  • M. Tehrani, M. Safdari, A. Y. Boroujeni, Z. Razavi, S. W. Case, K. Dahmen, H. Garmestani, and M. S. Al-Haik, “Hybrid carbon fiber/carbon nanotube composites for structural damping applications,” Nanotechnology, vol. 24, pp. 1–11, 2013. doi:10.1088/0957-4484/24/15/155704.
  • G. Pal and S. Kumar, “Multiscale modeling of effective electrical conductivity of short carbon fiber-carbon nanotube-polymer matrix hybrid composites,” Mater. Des., vol. 89, pp. 129–136, 2016. doi:10.1016/j.matdes.2015.09.105.
  • A. Alipour Skandani and M. Al-Haik, “Viscoplastic characterization and modeling of hybrid carbon fiber/carbon nanotubes reinforced composites,” Compos. Part B, vol. 99, pp. 63–74, 2016. doi:10.1016/j.compositesb.2016.06.029.
  • G. M. Odegard, T. C. Clancy, and T. S. Gates, “Modeling of the mechanical properties of nanoparticle/polymer composites,” Polymer, vol. 46, pp. 553–562, 2005. doi:10.1016/j.polymer.2004.11.022.
  • J. L. Tsai, S. H. Tzeng, and Y. T. Chiu, “Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation,” Compos. Part B, vol. 41, pp. 106–115, 2010. doi:10.1016/j.compositesb.2009.06.003.
  • B. A. Selim, L. W. Zhang, and K. M. Liew, “Impact analysis of CNT-reinforced composite plates based on Reddy's higher-order shear deformation theory using an element-free approach,” Compos. Struct., vol. 170, pp. 228–242, 2017. doi:10.1016/j.compstruct.2017.03.026.
  • L. W. Zhang, Z. G. Song, P. Qiao, and K. M. Liew, “Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads,” Comput. Met. Appl. Mech. Eng., vol. 313, pp. 889–903, 2017. doi:10.1016/j.cma.2016.10.020.
  • P. Malekzadeh and M. Dehbozorgi, “Low velocity impact analysis of functionally graded carbon nanotubes reinforced composite skew plates,” Compos. Struct., vol. 140, pp. 728–748, 2016. doi:10.1016/j.compstruct.2016.01.045.
  • A. Nosier, R. K. Kapania, and J. N. Reddy, “Forced vibration and low-velocity impact of laminated composite plates,” Sadhana, vol. 19, no. 3, pp. 509–541, 1994. doi:10.1007/BF02812166.
  • A. Nosier, R. K. Kapania, and J. N. Reddy. “Low-velocity impact of laminated composites using a layerwise theory,” Comput. Mech., vol. 13, no. 5, pp. 360–379, 1994. doi:10.1007/BF00512589.
  • A. Selmi, C. Friebel, I. Doghri, and H. Hassis, “Prediction of the elastic properties of single walled carbon nanotube reinforced polymers: A comparative study of several micromechanical models,” Compos. Sci. Technol., vol. 67, pp. 2071–2084, 2007. doi:10.1016/j.compscitech.2006.11.016.
  • S. Pashah, M. Massenzio, and E. Jacquelin, “Prediction of structural response for low velocity impact,” Int. J. Imp. Eng., vol. 35, pp. 119–132, 2008. doi:10.1016/j.ijimpeng.2006.12.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.