220
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Effect of enamel coatings on the mechanical properties of aluminium foams

ORCID Icon, , &
Pages 1130-1139 | Received 04 Dec 2017, Accepted 14 Jan 2018, Published online: 13 Feb 2018

References

  • L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties., Cambridge University Press, Cambridge, UK, 1997.
  • S. Rossi, L. Bergamo, and V. Fontanari, “Fire resistance and mechanical properties of enamelled aluminium foam,” Mater. Design., vol. 132, pp. 129–137, 2017. doi:10.1016/j.matdes.2017.06.064.
  • A. Jung and S. Diebels, “Microstructural characterisation and experimental determination of a multiaxial yield surface for open-cell aluminium foams,” Mater. Design., vol. 131, pp. 252–264, 2017. doi:10.1016/j.matdes.2017.06.017.
  • M. F. Ashby, “The properties of foams and lattices,” Philos. T. R. Soc. A., vol. 364, pp. 15–30, 2006. doi:10.1098/rsta.2005.1678.
  • M. A. Kader et al., “Microstructural characterisation and experimental determination of a multiaxial yield surface for open-cell aluminium foams,” Mater. Design., vol. 118, pp. 11–21, 2017. doi:10.1016/j.matdes.2017.01.011.
  • S. K. Nammi, G. Edwards, and H. Shirvani, “Effect of cell-size on the energy absorption features of closed-cell aluminium foams,” Acta Astronaut., vol. 128, pp. 243–250, 2016. doi:10.1016/j.actaastro.2016.06.047.
  • H. Qiao, S. Basu, C. Saldana, and S. Kumara, “Subsurface damage in milling of lightweight open-cell aluminium foams,” CIRP Ann-Manuf. Techn., vol. 66, pp. 125–128, 2017. doi:10.1016/j.cirp.2017.04.033.
  • Y. K. An, S. Y. Yang, E. T. Zhao, and H. A. Zhou, “Formation mechanism and three-point bending behaviour of directly fabricated aluminium foam plates,” Mater. Sci. Tech. Ser., vol. 33, pp. 421–429, 2017. doi:10.1080/02670836.2016.1221494.
  • I. Duarte, M. Vesenjak, and L. Krstulović-Opara, “Compressive behaviour of unconstrained and constrained integral-skin closed-cell aluminium foam,” Compos. Struct., vol. 154, pp. 231–238, 2016. doi:10.1016/j.compstruct.2016.07.038.
  • J. Banhart, Metal foams – From fundamental research to applications. In: K. Bhanu Sankara Rao, M. D. Matthew, and P. Shankar ( eds.), Frontier in the Design of Materials., CRC Press, Boca Raton, FL, pp. 280–289, 2007.
  • J. Jerz, F. Simancik, J. Kovacik, and P. Oslanec, “Energy demand reduction to ensure thermal comfort in buildings using aluminium foam,” Acta Metall. Slovaca., vol. 22, pp. 271–275, 2016. doi:10.12776/ams.v22i4.832.
  • K. Grilec, G. Maric, and K. Milos, “Aluminium foams in the design of transport means,” Promet., vol. 24, pp. 295–304, 2012. doi:10.7307/ptt.v24i4.437.
  • J. Banhart, “Manufacture, characterisation and application of cellular metals and metal foams,” Prog. Mat. Sci., vol. 46, pp. 559–632, 2001. doi:10.1016/S0079-6425(00)00002-5.
  • Y. Sugimura et al., “On the mechanical performance of closed cell al alloy foams,” Acta Mater., vol. 45, pp. 5245–5259, 1997. doi:10.1016/S1359-6454(97)00148-1.
  • X. Xia, Z. Zhang, and J. Wang, “Compressive characteristics of closed-cell aluminium foams after immersion in simulated seawater,” Mater. Design., vol. 67, pp. 330–336, 2005. doi:10.1016/j.matdes.2014.11.049.
  • S. Rossi, M. Fedel, and F. Deflorian, The use of coatings to improve the corrosion behavior of aluminum foam: Proc. corrosion 2017, In: N. Birbilis, M. Hurley, and C. Taylor ( Eds.), Research in Progress (RIP)., www.nace.org/2017RIP, NACE, Houston, TX, 2017.
  • S. Rossi, M. Fedel, L. Da Col, F. Deflorian, and S. Petrolli, “Coatings to increase the corrosion behaviour of aluminium foam,” Surf. Eng., vol. 33, pp. 405–409, 2017. doi:10.1080/02670844.2016.1276700.
  • S. Rossi, A. Quaranta, L. Tavella, F. Deflorian, and A. M. Compagnoni, Innovative luminescent vitreous enameled coatings, In: A. Tiwari L. Hihara J. Rawlins ( Eds.) Intelligent Coatings for Corrosion Control., chap. 7, Elsevier, Oxford, UK, 2015.
  • S. Pagliuca and W. D. Faust, Porcelain (vitreous) Enamels and Industrial Enamelling Processes., The International Enamellers Institute, Mantova, Italy, 2011.
  • P. H. Mayrhofer, C. Mitterer, L. Hultman, and H. Clemens, “Microstructural design of hard coatings,” Mater. Sci., vol. 51, pp. 1032–1114, 2006.
  • E. G. Berasategui and T. F. Page, “The contact response of thin SiC-coated silicon systems—Characterisation by nanoindentation,” Surf. Coat. Tech., vol. 163–164, pp. 491–498, 2003. doi:10.1016/S0257-8972(02)00647-3.
  • S. Schmidt and C. A. Grimes, “Elastic modulus measurement of thin films coated onto magneto elastic ribbons,” IEEE Trans. Magn., vol. 37, pp. 2731–2733, 2001. doi:10.1109/20.951289.
  • E. Andrews, W. Sanders, and L. J. Gibson, “Compressive and tensile behaviour of aluminium foams,” Mater. Sci. Eng., vol. 270, pp. 113–124, 1999. doi:10.1016/S0921-5093(99)00170-7.
  • F. Triawan et al., “The elastic behaviour of aluminium alloy foam under uniaxial loading and bending conditions,” Acta Mater., vol. 60, pp. 3084–3093, 2012. doi:10.1016/j.actamat.2012.02.013.
  • G. Lu, J. Shen, W. Hou, D. Ruan, and L. S. Ong, “Dynamic indentation and penetration of aluminium foams,” Int. J. Mech. Sci., vol. 50, pp. 932–943, 2008. doi:10.1016/j.ijmecsci.2007.09.006.
  • Y. W. Bao, Y. C. Zhou, X. X. Bu, and Y. Qiu, “Evaluating elastic modulus and strength of hard coatings by relative method,” Mat. Sci. Eng. A-Struct., vol. 458, pp. 268–274, 2007. doi:10.1016/j.msea.2006.12.131.
  • J. L. Grenestedt and F. Bassinet, “Influence of cell wall thickness variations on elastic stiffness of closed-cell cellular solids,” Int. J. Mech. Sci., vol. 42, pp. 1327–1338, 2000. doi:10.1016/S0020-7403(99)00054-5.
  • Y. Chen, R. Das, and M. Battley, Modelling of closed-cell foams incorporating cell size and cell wall thickness variations, Proceedings of the 11th World Congress on Computational Mechanics., July 20–25 Barcelona, Spain, pp. 1–12, 2014.
  • R. Edwin Raj and B. S. S. Daniel, “Customization of closed-cell aluminium foam properties using design of experiments,” Mater. Sci. Eng., vol. 528, pp. 2067–2075, 2011. doi:10.1016/j.msea.2010.11.035.
  • H. Yu et al., “Research into the effect of cell diameter of aluminium foam on its compressive and energy absorption properties,” Mater. Sci. Eng., vol. 454–455, pp. 542–546, 2007. doi:10.1016/j.msea.2006.11.091.
  • M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, and J. W. Hutchinson, Metal Foams: A Design Guide., Butterworth-Heinemann, Woborn, MA, 2000.
  • W. Weaver, Jr., S. P. Timoshenko, and D. H. Young, Vibration Problems in Engineering., 5th. ed., John Wiley & Sons Inc, Hoboken, NJ: 1992.
  • K. S. Yen, M. M. Ratnam, and H. M. Akil, “Measurement of flexural modulus of polymeric foam with improved accuracy using moiré method,” Polym. Test., vol. 29, pp. 358–368, 2010. doi:10.1016/j.polymertesting.2009.12.011.
  • R. C. Hibbeler, Mechanics of Materials., 8th. Ed., Pearson Prentice Hall, Upper Saddle River, NJ: 2011.
  • G. Ghorbal, A. Tricoteaux, A. Thuault, G. Louis, and D. Chicot, “Mechanical characterization of brittle materials using instrumented indentation with Knoop indenter,” Mech. Mater., vol. 108, pp. 58–67, 2017. doi:10.1016/j.mechmat.2017.03.009.
  • O. B. Olurin, F. A. Fleck, and M. F. Ashby, “Indentation resistance of an aluminium foam,” Scripta Mater., vol. 11, pp. 983–989, 2003.
  • NDSolve function of Mathematica® (Wolfram Research, Champaign IL, USA), https://www.wolfram.com/mathematica/ ( accessed 01.09.2017).
  • A. Marasco and C. Tenneriello, “Periodic solutions of a 2D-autonomous system using Mathematica,” Math. Comput. Model., vol. 45, pp. 681–693, 2007. doi:10.1016/j.mcm.2006.07.014.
  • E. A. del Rio-Chanona et al., “On the solution of differential-algebraic equations through gradient flow embedding,” Comput. Chemi. Eng., vol. 103, pp. 165–175, 2017. doi:10.1016/j.compchemeng.2017.03.020.
  • N. V. Malyar, G. Dehm, and C. Kirchlechner, “Strain rate dependence of the slip transfer through a penetrable high angle grain boundary in copper,” Scripta Mater., vol. 138, pp. 88–91, 2017. doi:10.1016/j.scriptamat.2017.05.042.
  • L. M. Gil-Martín and E. Hernández-Montes, “Safety levels of the traditional strength design of RC slabs under bending and torsion,” Eng. Struct., vol. 127, pp. 374–387, 2016. doi:10.1016/j.engstruct.2016.08.063.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.