180
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Bending of boron nitride nanotubes: An atomistic study

, &
Pages 1357-1364 | Received 21 Sep 2017, Accepted 17 Nov 2017, Published online: 09 Feb 2018

References

  • S. Iijima, “Helical microtubules of graphitic carbon,” Nature., vol. 354, no. 6348, pp. 56, 1991. doi:10.1038/354056a0.
  • B. Baumeier, P. Krüger, and J. Pollmann, “Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes,” Phys. Rev. B.,vol. 76, no. 8, pp. 085407, 2007. doi:10.1103/PhysRevB.76.085407.
  • G. Guo, S. Ishibashi, T. Tamura, and K. Terakura, “Static dielectric response and Born effective charge of BN nanotubes from ab initio finite electric field calculations,” Phys. Rev. B., vol. 75, no. 24,pp. 245403, 2007. doi:10.1103/PhysRevB.75.245403.
  • N. G. Chopra, R. Luyken, K. Cherrey, and V. H. Crespi, “Boron nitride nanotubes,” Science., vol. 269, no. 5226, pp. 966, 1995. doi:10.1126/science.269.5226.966.
  • O. R. Lourie et al., “CVD growth of boron nitride nanotubes,” Chem. Mater., vol. 12, no. 7, pp. 1808–1810, 2000. doi:10.1021/cm000157q.
  • D. Golberg et al., “Nanotubes in boron nitride laser heated at high pressure,” Appl. Phys. Lett., vol. 69, no. 14, pp. 2045–2047, 1996. doi:10.1063/1.116874.
  • Y. Chen, L. T. Chadderton, J. F. Gerald, and J. S. Williams, “A solid-state process for formation of boron nitride nanotubes,” Appl. Phys. Lett., vol. 74, no. 20, pp. 2960–2962, 1999. doi:10.1063/1.123979.
  • A. P. Suryavanshi, M.-F. Yu, J. Wen, C. Tang, and Y. Bando, “Elastic modulus and resonance behavior of boron nitride nanotubes,” Appl. Phys. Lett., vol. 84, no. 14, pp. 2527–2529, 2004. doi:10.1063/1.1691189.
  • D. Golberg et al., “Direct force measurements and kinking under elastic deformation of individual multiwalled boron nitride nanotubes,” Nano Lett., vol. 7, no. 7, pp. 2146–2151, 2007. doi:10.1021/nl070863r.
  • N. G. Chopra and A. Zettl, “Measurement of the elastic modulus of a multi-wall boron nitride nanotube,” Solid State Commun., vol. 105, no. 5, pp. 297–300, 1998. doi:10.1016/S0038-1098(97)10125-9.
  • R. Arenal, M.-S. Wang, Z. Xu, A. Loiseau, and D. Golberg, “Young modulus, mechanical and electrical properties of isolated individual and bundled single-walled boron nitride nanotubes,” Nanotechnology., vol. 22, no. 26, pp. 265704, 2011. doi:10.1088/0957-4484/22/26/265704.
  • Y. Chen, J. Zou, S. J. Campbell, and G. Le Caer, “Boron nitride nanotubes: pronounced resistance to oxidation,” Appl. Phys. Lett., vol. 84, no. 13, pp. 2430–2432, 2004. doi:10.1063/1.1667278.
  • C. Chang et al., “Isotope effect on the thermal conductivity of boron nitride nanotubes,” Phys. Rev. Lett., vol. 97, no. 8, pp. 085901, 2006. doi:10.1103/PhysRevLett.97.085901.
  • C. Attaccalite, L. Wirtz, A. Marini, and A. Rubio, “Efficient Gate-tunable light-emitting device made of defective boron nitride nanotubes: from ultraviolet to the visible,” Sci. Rep., pp. 3, 2013.
  • L. H. Li et al., “Single deep ultraviolet light emission from boron nitride nanotube film,” Appl. Phys. Lett., vol. 97, no. 14, pp. 141104, 2010. doi:10.1063/1.3497261.
  • W. Meng, Y. Huang, Y. Fu, Z. Wang, and C. Zhi, “Polymer composites of boron nitride nanotubes and nanosheets,” J. Mater. Chem. C.,vol. 2, no. 47, pp. 10049–10061, 2014. doi:10.1039/C4TC01998A.
  • P. Nautiyal, A. Gupta, S. Seal, B. Boesl, and A. Agarwal, “Reactive wetting and filling of boron nitride nanotubes by molten aluminum during equilibrium solidification,” Acta Mater., vol. 126, pp. 124–131, 2017. doi:10.1016/j.actamat.2016.12.034.
  • J. H. Kang et al., “Multifunctional electroactive nanocomposites based on piezoelectric boron nitride nanotubes,” ACS Nano., vol. 9, no. 12, pp. 11942–11950, 2015. doi:10.1021/acsnano.5b04526.
  • A. Chandra, P. K. Patra, and B. Bhattacharya, “Thermomechanical buckling of boron nitride nanotubes using molecular dynamics,” Mater. Res. Exp., vol. 3, no. 2, pp. 025005, 2016. doi:10.1088/2053-1591/3/2/025005.
  • Y. Huang et al., “Thin boron nitride nanotubes with exceptionally high strength and toughness,” Nanoscale., vol. 5, no. 11, pp. 4840–4846, 2013. doi:10.1039/c3nr00651d.
  • T. Li, Z. Tang, Z. Huang, and J. Yu, “A comparison between the mechanical and thermal properties of single-walled carbon nanotubes and boron nitride nanotubes,” Phys. E: Low-dimensional Syst. Nanostructures., vol. 85, pp. 137–142, 2017. doi:10.1016/j.physe.2016.08.012.
  • Y. Kinoshita and N. Ohno, “Electronic structures of boron nitride nanotubes subjected to tension, torsion, and flattening: A first-principles DFT study,” Phys. Rev. B., vol. 82, no. 8, pp. 085433, 2010. doi:10.1103/PhysRevB.82.085433.
  • N. Anoop Krishnan and D. Ghosh, “Defect induced plasticity and failure mechanism of boron nitride nanotubes under tension,” J. Appl. Phys., vol. 116, no. 4, pp. 044313, 2014. doi:10.1063/1.4891519.
  • N. Anoop Krishnan and D. Ghosh, “Chirality dependent elastic properties of single-walled boron nitride nanotubes under uniaxial and torsional loading,” J. Appl. Phys., vol. 115, no. 6, pp. 064303, 2014. doi:10.1063/1.4864781.
  • Q.-L. Xiong and X. G. Tian, “Torsional properties of hexagonal boron nitride nanotubes, carbon nanotubes and their hybrid structures: A molecular dynamics study,” AIP Adv., vol. 5, no. 10,pp. 107215, 2015. doi:10.1063/1.4934526.
  • J. Garel et al., “Ultrahigh torsional stiffness and strength of boron nitride nanotubes,” Nano Lett., vol. 12, no. 12, pp. 6347–6352, 2012. doi:10.1021/nl303601d.
  • A. E. Tanur et al., “Diameter-dependent bending modulus of individual multiwall boron nitride nanotubes,” J. Phys. Chem. B., vol. 117,no. 16, pp. 4618–4625, 2013. doi:10.1021/jp308893s.
  • J. Zhang, “Size-dependent bending modulus of nanotubes induced by the imperfect boundary conditions,” Sci. Rep., pp. 6, 2016.
  • M. B. Panchal and S. Upadhyay, “Vibrational characteristics of defective single walled BN nanotube based nanomechanical mass sensors: Extended defect or dislocation line,” Sens. Actuators A: Phys., vol. 203, pp. 160–167, 2013. doi:10.1016/j.sna.2013.08.031.
  • M. B. Panchal, S. Upadhyay, and S. Harsha, “Vibrational characteristics of defective single walled BN nanotube based nanomechanical mass sensors: Single atom vacancies and divacancies,” Sens. Actuators A: Phys., vol. 197, pp. 111–121, 2013. doi:10.1016/j.sna.2013.04.011.
  • X. Yao, Q. Han, and H. Xin, “Bending buckling behaviors of single-and multi-walled carbon nanotubes,” Comput. Mater. Sci., vol. 43,no. 4, pp. 579–590, 2008. doi:10.1016/j.commatsci.2007.12.019.
  • Y. Sun and K. M. Liew, “The buckling of single-walled carbon nanotubes upon bending: the higher order gradient continuum and mesh-free method,” Comput, Methods Appl. Mech. Eng., vol. 197, no. 33, pp. 3001–3013, 2008. doi:10.1016/j.cma.2008.02.003.
  • G. Cao and X. Chen, “Buckling of single-walled carbon nanotubes upon bending: Molecular dynamics simulations and finite element method,” Phys. Rev. B., vol. 73, no. 15, pp. 155435, 2006. doi:10.1103/PhysRevB.73.155435.
  • S. Hollerer, “Numerical validation of a concurrent atomistic-continuum multiscale method and its application to the buckling analysis of carbon nanotubes,” Comput. Methods Appl. Mech. Eng., vol. 270, pp. 220–246, 2014. doi:10.1016/j.cma.2013.11.014.
  • J. Tersoff, “Modeling solid-state chemistry: Interatomic potentials for multicomponent systems,” Phys. Rev. B., vol. 39, no. 8, pp. 5566–5568, 1989. doi:10.1103/PhysRevB.39.5566.
  • C. Wang et al., “Buckling behavior of carbon nanotubes under bending: from ripple to kink,” Carbon., vol. 102, pp. 224–235, 2016. doi:10.1016/j.carbon.2016.02.041.
  • C. Sevik, A. Kinaci, J. B. Haskins, and T. Çağın, “Characterization of thermal transport in low-dimensional boron nitride nanostructures,” Phys. Rev. B., vol. 84, no. 8, pp. 085409, 2011. doi:10.1103/PhysRevB.84.085409.
  • M. Q. Le and D. T. Nguyen, “Atomistic simulations of pristine and defective hexagonal BN and SiC sheets under uniaxial tension,” Mater. Sci. Eng. A., vol. 615, no. 2014, pp. 481–488, 2014. doi:10.1016/j.msea.2014.07.109.
  • M.-Q. Le, “Atomistic study on the tensile properties of hexagonal AlN, BN, GaN, InN and SiC sheets,” J. Comput. Theor. Nanoscience., vol. 11, no. 6, pp. 1458–1464, 2014. doi:10.1166/jctn.2014.3518.
  • V. Parvaneh, M. Shariati, and H. Torabi, “Bending buckling behavior of perfect and defective single-walled carbon nanotubes via a structural mechanics model,” Acta Mech., pp. 1–10, 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.