224
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Nonlinear finite element analysis of a multiwalled carbon nanotube resting on a Pasternak foundation

, &
Pages 1505-1517 | Received 22 Nov 2017, Accepted 25 Jan 2018, Published online: 07 Mar 2018

References

  • S. E. Khadem, M. Rasekh, and A. Toghraee, “Design and simulation of a carbon nanotube-based adjustable nano-electromechanical shock switch,” Appl. Math. Modell., vol. 36, pp. 2329–2339, 2012.
  • X. Li, B. Bhushan, K. Takashima, C. W. Baek, and Y. K. Kim, “Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques,” Ultramicroscopy, vol. 97, pp. 481–494, 2003.
  • F. Najar, A. H. Nayfeh, E. M. Abdel-Rahman, S. Choura, and S. El-Borgi, “Global stability of microbeam-based electrostatic microactuators,” J. Vib. Control., vol. 16, pp. 721–748, 2010.
  • J. Pei, F. Tian, and T. Thundat, “Glucose biosensor based on the microcantilever,” Anal. Chem., vol. 76, pp. 292–297, 2004.
  • M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol., vol. 2, pp. 114–120, 2007.
  • A. C. Eringen, “Nonlocal polar elastic continua,” Int. J. Eng. Sci., vol. 10, pp. 1–16, 1972.
  • A. C. Eringen. Nonlocal Continuum Field Theories, Springer-Verlag, New York, 2002.
  • A. C. Eringen and D. Edelen, “On nonlocal elasticity,” Int. J. Eng. Sci., vol. 10, pp. 233–248, 1972.
  • J. N. Reddy, “Nonlocal theories for bending, buckling and vibration of beams,” Int. J. Eng. Sci., vol. 45, pp. 288–307, 2007.
  • J. N. Reddy and S. D. Pang, “Nonlocal continuum theories of beams for the analysis of carbon nanotubes,” Appl. Phys. Lett., vol. 103, no. 023511, pp. 16, 2008.
  • C. M. Wang, S. Kitipornchai, C. W. Lim, and M. Eisenberger, “Beam bending solutions based on nonlocal Timoshenko beam theory,” J. Eng. Mech., vol. 134, pp. 475–481, 2008.
  • C. M. Wang, Y. Y. Zhang, S. S. Ramesh, and S. Kitipornchai, “Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory,” J. Phys. D-Appl. Phys., vol. 39, pp. 3904–3909, 2006.
  • H. T. Thai, “A nonlocal beam theory for bending, buckling, and vibration of nanobeams,” Int. J. Eng. Sci., vol. 52, pp. 56–64, 2012.
  • H. T. Thai and T. P. Vo, “A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams,” Int. J. Eng. Sci., vol. 54, pp. 58–66, 2012.
  • M. Aydogdu, “A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration,” Phys. E, vol. 41, pp. 1651–1655, 2009.
  • M. Aydogdu, “Longitudinal wave propagation in multiwalled carbon nanotubes,” Compos. Struct., vol. 107, pp. 578–584, 2014.
  • M. A. Eltaher, M. A. Hamed, A. M. Sadoun, and A. Mansour, “Mechanical analysis of higher order gradient nanobeams,” Appl. Math. Comput., vol. 229, pp. 260–272, 2014.
  • M. A. Eltaher, A. E. Alshorbagy, and E. F. Mahmoud, “Vibration analysis of Euler–Bernoulli nanobeams by using finite element method,” Appl. Math. Modell., vol. 37, pp. 4787–4797, 2013.
  • O. Civalek and C. Demir, “A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method,” Appl. Math. Comput., vol. 289, pp. 335–352, 2016.
  • C. Demir and O. Civalek, “A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nanobeams surrounded by an elastic matrix,” Compos. Struct., vol. 168, pp. 872–884, 2007.
  • M. A. Eltaher, S. A. Emam, and F. F. Mahmoud, “Static and stability analysis of nonlocal functionally graded nanobeams,” Compos. Struct., vol. 96, pp. 82–88, 2013.
  • M. A. Eltaher, S. A. Emam, and F. F. Mahmoud, “Free vibration analysis of functionally graded size-dependent nanobeams,” Appl. Math. Comput., vol. 218, pp. 7406–7420, 2012.
  • N. T. Nguyen, N. I. Kim, and J. Lee, “Mixed finite element analysis of nonlocal Euler–Bernoulli nanobeams,” Finite Elem. Anal. Des., vol. 106, pp. 65–72, 2015.
  • S. C. Pradhan, “Nonlocal finite element analysis and small scale effects of CNTs with Timoshenko beam theory,” Finite Elem. Anal. Des., vol. 50, pp. 8–20, 2012.
  • S. C. Pradhan and U. Mandal, “Finite element analysis of CNTs based on nonlocal elasticity and Timoshenko beam theory including thermal effect,” Physica E, vol. 53, pp. 223–232, 2013.
  • M. A. Eltaher, A. Khairy, A. M. Sadoun, and F. A. Omar, “Static and buckling analysis of functionally graded Timoshenko nanobeams,” Appl. Math. Comput., vol. 229, pp. 283–295, 2014.
  • G. P. Lignola, F. R. Spena, A. Prota, and G. Manfredi, “Exact stiffness-matrix of two nodes Timoshenko beam on elastic medium-An analogy with Erigen model of nonlocal Euler–Bernoulli nanobeams,” Comput. Struct., vol. 182, pp. 556–572, 2017.
  • J. N. Reddy and S. El-Borgi, “Eringen's nonlocal theories of beams accounting for moderate rotations,” Int. J. Eng. Sci., vol. 82, pp. 159–177, 2014.
  • J. N. Reddy, S. El-Borgi, and J. Romanoff, “Nonlinear analysis of functionally graded microbeams using Eringen's nonlocal differential model,” Int. J. Non-linear Mech., vol. 67, pp. 308–318, 2014.
  • M. A. Eltaher, S. El-Borgi, and J. N. Reddy, “Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs,” Compos. Struct., vol. 153, pp. 902–913, 2016.
  • K. Preethi, A. Rajagopal, and J. N. Reddy, “Surface and nonlocal effects for nonlinear analysis of Timoshenko beams,” Int. J. Non-linear Mech., vol. 76, pp. 100–111, 2015.
  • E. Reissner, “On a certain mixed variational theorem and a proposed application,” Int. J. Numer. Methods Eng., vol. 20, pp. 1366–1368, 1984.
  • E. Reissner, “On a mixed variational theorem and on shear deformable plate theory,” Int. J. Numer. Methods Eng., vol. 23, pp. 193–198, 1986.
  • E. Carrera, “An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates,” Compos. Struct., vol. 50, pp. 183–198, 2000.
  • E. Carrera, “Assessment of theories for free vibration analysis of homogeneous and multilayered plates,” Shock Vib., vol. 11, pp. 261–270, 2004.
  • C. P. Wu and H. Y. Li, “The RMVT- and PVD-based finite layer methods for the three-dimensional analysis of multilayered composite and FGM plates,” Compos. Struct., vol. 92, pp. 2476–2496, 2010.
  • C. P. Wu and S. K. Chang, “Stability of carbon nanotube-reinforced composite plates with surface-bonded piezoelectric layers and under bi-axial compression,” Compos. Struct., vol. 111, pp. 587–601, 2014.
  • S. Brischetto and E. Carrera, “Advanced mixed theories for bending analysis of functionally graded plates,” Comput. Struct., vol. 88, pp. 1474–1483, 2010.
  • S. Brischetto and E. Carrera, “Refined 2D models for the analysis of functionally graded piezoelectricity plates,” J. Intell. Mater. Syst. Struct., vol. 20, pp. 1783–1797, 2009.
  • C. P. Wu, K. H. Chiu, and Y. M. Wang, “A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells,” CMC-Comput. Mater. Continua, vol. 18, pp. 93–132, 2008.
  • C. P. Wu and Y. C. Liu, “A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells,” Compos. Struct., vol. 147, pp. 1–15, 2016.
  • C. P. Wu and W. W. Lai, “Reissner's mixed variational theorem-based nonlocal Timoshenko beam theory for a single-walled carbon nanotube embedded in an elastic medium and with various boundary conditions,” Compos. Struct., vol. 122, pp. 390–404, 2015.
  • C. P. Wu and W. W. Lai, “Free vibration of an embedded single-walled carbon nanotube with various boundary conditions using the RMVT-based nonlocal Timoshenko beam theory and DQ method,” Phys. E, vol. 68, pp. 8–21, 2015.
  • Y. M. Wang, S. M. Chen, and C. P. Wu, “A meshless collocation method based on the differential reproducing kernel interpolation,” Comput. Mech., vol. 45, pp. 585–606, 2010.
  • S. M. Chen, C. P. Wu, and Y. M. Wang, “A Hermite DRK interpolation-based collocation method for the analysis of Bernoulli–Euler beams and Kirchhoff –Love plates,” Comput. Mech., vol. 47, pp. 425–453, 2011.
  • C. W. Bert and M. Malik, “Differential quadrature: A powerful new technique for analysis of composite structures,” Compos. Struct., vol. 3, pp. 179–189, 1997.
  • H. Du, M. Lim, and R. Lin, “Application of generalized differential quadrature method to structural problems,” Int. J. Numer. Methods Eng., vol. 37, pp. 1881–1896, 1994.
  • C. P. Wu and C. Y. Lee, “Differential quadrature solution for the free vibration analysis of laminated conical shells with variable stiffness,” Int. J. Mech. Sci., vol. 43, pp. 1853–1869, 2001.
  • C. P. Wu, Z. L. Hong, and Y. M. Wang, “Geometrically nonlinear static analysis of an embedded multi-walled carbon nanotube and the van der Waals interaction,” J. Nanomech. Micromech., vol. 7, p. 04017012, 2017.
  • Q. Wang and C. Wang, “The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes,” Nanotechnol, vol. 18, pp. 075702, 2007.
  • X. Q. He, S. Kitipornchai, and K. M. Liew, “Buckling analysis of multi-walled carbon nanotubes: A continuum model accounting for van der Waals interaction,” J. Mech. Phys. Solids, vol. 53, pp. 303–326, 2005.
  • X. Q. He, S. Kitipornchai, C. M. Wang, and K. M. Liew, “Modeling of van der Waals force for infinitesimal deformation of multi-walled carbon nanotubes treated as cylindrical shells,” Int. J. Solids Struct., vol. 42, pp. 6032–6047, 2005.
  • C. Q. Ru, “Elastic models for carbon nanotubes,” Encyclopedia Nanosci. Nanotech., vol. 2, pp. 731–744, 2004.
  • C. Q. Ru, “Column buckling of multiwalled carbon nanotubes with interlayer radial displacements,” Phys. Rev. B, vol. 62, p. 16962, 2000.
  • G. Cowper, “The shear coefficient in Timoshenko's beam theory,” J. Appl. Mech., vol. 33, pp. 335–340, 1966.
  • J. N. Reddy. Energy and Variational Methods in Applied Mechanics, Wiley-Interscience Publication, New York, 1984.
  • J. N. Reddy. An Introduction to the Finite Element Method, McGraw-Hill Book Company, New York, 1984.
  • M. Simsek, “Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He's variational method,” Compos. Struct., vol. 112, pp. 264–272, 2014.
  • Q. Yang and C. W. Lim, “Nonlinear thermal bending for shear deformable nanobeams based on nonlocal elasticity theory,” Int. J. Aerospace Lightweight Struct., vol. 1, pp. 89–107, 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.